

AQUAFORCE® 30XS 100 - 240

Resfriador de Líquido (Chiller) Tipo Parafuso com Condensação a Ar

Manual de Instalação, Operação e Manutenção

Índice

1.	Considerações de Segurança	. 1
	Introdução	. 1
2.	Nomenclatura (Model Number)	. 2
3.	Instalação	
	Armazenamento	. 3
	Etapa 1 — Inspecionar o Embarque	. 3
	Etapa 2 — Posicionar, Montar e Içar a Unidade	. 3
	Etapa 3 - Conexões da Tubulação de Dreno e Água do Evaporador	18
	Etapa 4 — Preencher o Circuito de Água Gelada	25
	Etapa 5 – Conexões Elétricas	28
	Etapa 6 — Instalar Acessórios	31
	Etapa 7 — Unidade de Teste de Vazamento	32
	Etapa 8 – Carregamento do Refrigerante	32
	Etapa 9 — Tradutor BACnet/Modbus Carrier	32
4.	Pré-Start-up (partida)	34
5.	Start-up (partida)	34
6.	Operação	39
7.	Serviço	47
	Unidades com Evaporador tipo inundado	54
	Tratamento da Água dos Trocadores	57
	Recomendações de Manutenção e Limpeza das	
	Serpentina Condensadoras "Gold Fin"	58
	Ventiladores do Condensador	
	Contaminantes das Serpentinas	
	Circuito de Refrigerante	62
	Proteção do Compressor	63
	Proteção do Evaporador	63
8.	Manutenção	64
9.	Teste de Serviço (Service Test)	64
10.	Diagramas Elétricos e Lista de Alarmes	65
11.	Carta de Seleção de Adaptadores Flange/Solda para Conexões Victaulic	65
12.	Módulo de Gerenciamento de Energia	66

1. Considerações de Segurança

AVISO

Choque elétrico pode causar ferimentos corporais e morte. Desligue completamente a energia deste equipamento durante a instalação. Pode haver mais de um interruptor de desconexão. Coloque etiquetas em todos os locais de desconexão, alertando outros para que não restaurem a energia até que o trabalho esteja concluído.

Instalar, iniciar e prestar manutenção a este equipamento pode ser perigoso devido às pressões do sistema, aos componentes elétricos e ao local de instalação do equipamento. Apenas mecânicos de manutenção e instaladores qualificados e treinados devem instalar, por em funcionamento e fazer reparos neste equipamento.

Ao trabalhar no equipamento, observe as precauções indicadas no manual e nas etiquetas e rótulos anexos a este.

- · Observe todos os códigos de segurança;
- Use óculos de segurança e luvas de trabalho;
- Cuidado ao manusear, içar e ajustar equipamentos volumosos.

⚠ IMPORTANTE

Este equipamento gera, utiliza e pode irradiar energia por radiofrequência e, caso não instalado e utilizado de acordo com estas instruções, este equipamento pode causar interferência de rádio.

Consulte os Códigos e/ou Normas aplicáveis a instalação da unidade no local, de maneira a assegurar que a instalação elétrica esteja de acordo com os padrões e requisitos especificados. Norma NBR5410 "Instalações Elétricas de Baixa Tensão".

Introdução

Estas instruções cobrem a instalação dos chillers com condensação a ar 30XS com controles eletrônicos e unidades com opcionais instalados em fábrica (FIOPs).

Conexões e Acoplamentos

A unidade dispõe um ou dois pontos de alimentação de energia (utilizando um transformador de potência do controle) e conexões rápidas e fáceis da tubulação (utilizando um acoplamento tipo Victaulic® - padrão de fábrica).

AVISO

O acoplamento Victaulic® deve ser adquirido separadamente. Para outras formas de conexão, veja o item Nomenclatura a seguir (no dígito de acessórios).

2. Nomenclatura (Model Number)

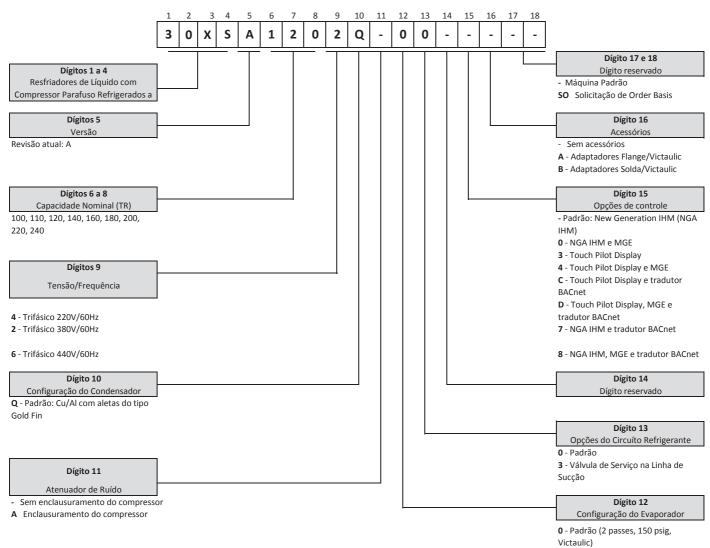


Figura 1 — Nomenclatura

3. Instalação

Armazenamento

Se a unidade precisar ser armazenada por um período de tempo antes da instalação ou inicialização, certifiquese de proteger a máquina contra sujeiras de construção. Mantenha as capas protetivas de transporte na máquina até ela estar pronta para a instalação.

Etapa 1 — Inspecionar o Embarque

Inspecione a unidade quanto a danos na chegada. Se algum dano for encontrado, preencha uma reclamação para a empresa de transporte imediatamente. Verifique a entrega correta da unidade inspecionando os dados da placa de identificação da unidade e a nomenclatura (model number), conforme mostrado no Item 2. Não armazene as unidades em uma área exposta às intempéries devido aos sensíveis mecanismos de controle e dispositivos eletrônicos.

O chiller e o acionador de partida devem ser armazenados em local fechado, protegidos da sujeira da construção e da umidade e sob temperaturas entre 4,4°C (40°F) e 48,9°C (120°F) e uma umidade relativa entre 10% e 80% (sem condensação).

Etapa 2 — Posicionar, Montar e Içar a Unidade

Coloque a unidade em ambiente fechado. Ao avaliar a localização da unidade, consulte a Norma NBR5410 e os requisitos e códigos locais. Deixe espaço suficiente para a fiação, tubulação e manutenção - Veja as Figuras 2a a 2i. Instale a unidade em uma área que NÃO será exposta a temperaturas ambiente abaixo de 10°C (50°F).

Certifique-se de que a superfície abaixo da unidade está nivelada e pode suportar o peso operacional da unidade. Veja as Tabelas 1a e 1b e a Figura 3 para a montagem da unidade e pesos operacionais. Caso necessário, acrescente uma estrutura de apoio (vigas de aço ou lajes de concreto armado) ao piso para transferir o peso às vigas mais próximas.

Veja as Figuras 2a a 2i para detalhes sobre as folgas.

NOTA

Para facilitar a tubulação do ventil de refrigerante, todas as unidades têm plugues fusíveis com repuxos de 1/4 in SAE (Sociedade de Engenheiros Automotivos) e válvulas de segurança com encaixes NPT de 3/4 in (caso seja exigido pelos códigos locais).

POSICIONAMENTO DA UNIDADE

Coloque a unidade de maneira que o fluxo de ar do condensador fique limitado tanto na parte de cima quanto nas laterais da unidade.

As áreas de manutenção e fluxo de ar são de 1,8 metros ao redor da unidade. Os espaçamentos aceitáveis nas laterais ou extremidades sem quadro elétrico podem ser reduzidos para 1 metro sem sacrificar a performance, contanto que os três lados remanescentes permaneçam nos limites aceitáveis.

O espaçamento aceitável na lateral com caixa de controle pode ser reduzido para 1,3 metros devido às regulamentações da NBR 5410, sem sacrificar o desempenho, contanto que os três lados remanescentes permaneçam nos limites aceitáveis.

Mantenha espaços amplos para reparos e remoção do evaporador. Veja as Figuras 2a a 2i para os espaçamentos exigidos. Os códigos locais sobre espaçamentos substituirão as recomendações do fabricante quando os códigos locais exigirem espaçamentos maiores.

Se forem instaladas várias unidades no mesmo local, será exigida uma distância mínima de 3 metros entre as laterais das máquinas para manter o fluxo de ar adequado e reduzir ao mínimo as chances de recirculação de ar do condensador.

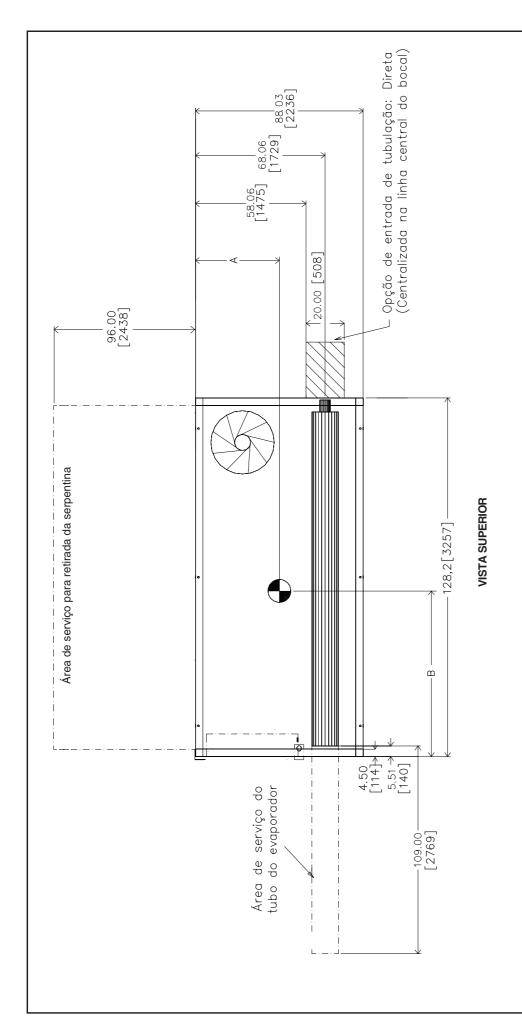
MONTANDO A UNIDADE

A unidade pode ser montada sobre um calço nivelado diretamente nos trilhos da base, em um trilho de montagem elevado ao redor da unidade ou sobre molas de isolamento contra vibrações. Para todas as unidades, certifique-se de que a área de colocação seja rígida o suficiente para suportar o peso de operação da unidade.

Veja as figuras 2f a 2i. Há furos de montagem para a fixação da unidade ao calço, ao trilho de montagem ou às molas de isolamento contra vibrações.

Fixe a unidade firmemente ao calço ou aos trilhos. Se forem exigidos isoladores contra de vibração (fornecidos em campo) para uma instalação específica, consulte a distribuição do peso da unidade na Figura 3 para auxiliar na seleção adequada de isoladores.

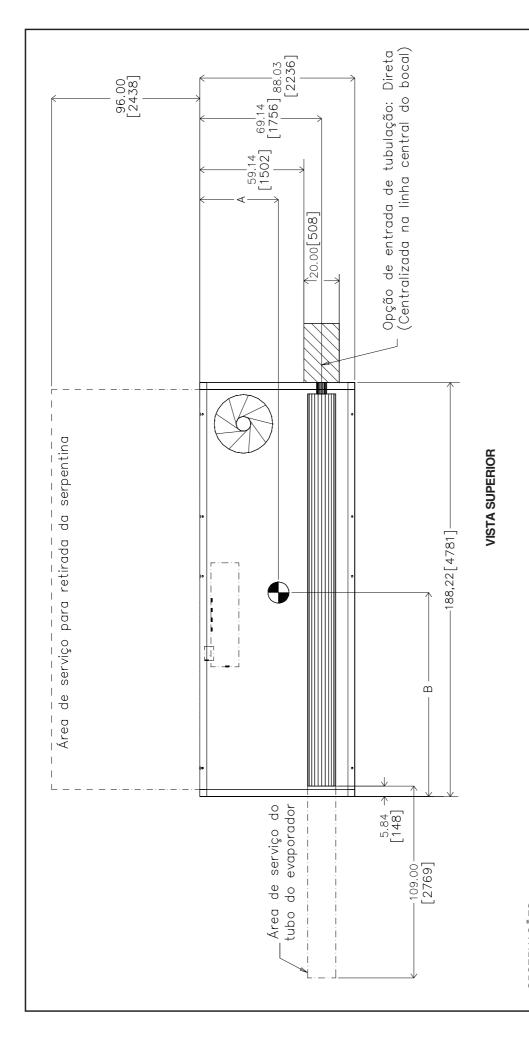
As unidades 30XS podem ser montadas diretamente em molas isoladoras. Uma vez instalada, a unidade precisa ser nivelada no limite de 10 mm por metro ao longo do eixo do separador de óleo. Isto é exigido para o retorno do óleo para o(s) compressor(es).


ATENÇÃO

Cuidados com Pintura - Instalações no Entorno das Máquinas:

A Carrier recomenda que durante as instalações realizadas no entorno da máquina, como precaução para que não ocorram danos na pintura, a máquina seja isolada/protegida, de maneira que cavacos derivados de procedimentos de corte em peças metálicas, não entrem em contato com esta. Esta precaução é necessária, pois este cavaco incandescente, poderá se fixar sobre a tinta, dando a impressão que o processo de pintura esteja com problema de corrosão, quando na verdade trata-se de impregnação de sujeiras destas instalações no entorno.

Recomenda-se também que, após as instalações realizadas no entorno da máquina, a mesma receba uma limpeza geral, para que possíveis cavacos de instalação ou sujeiras de obra, não fiquem impregnadas sobre a pintura da máquina.


OBSERVAÇÕES:

- 1. A unidade deve ter espaçamentos conforme segue:
- Dispositivos de alívio de temperatura estão localizados na linha de líquido e nas montagens do Economizador e Parte superior — Não restringir / Laterais e extremidades — 1,8 m (6 pés) a partir da superfície sólida. tem conexão de abertura de 1/4 in.
- Drenos e ventils NPT de 3/8 in localizados em cada cabeça do evaporador em cada extremidade do evaporador. က်
 - Evaporador padrão de dois passes. Consulte o software Packaged Chiller Builder para outras configurações. 4. .6
 - Dimensões mostradas em polegadas. As dimensões entre [] estão em milímetros.

61,61 [1565] 62,87 [1597] 62,36 [1584] 42,12 [1070] 42,79 [1087] 42,91 [1090] 30XSA 100 110 120

Figura 2a — Vista superior do chiller 30XS 100 - 110 - 120.

OBSERVAÇÕES:

- 1. A unidade deve ter espaçamentos conforme segue:
- Dispositivos de alívio de temperatura estão localizados na linha de Iíquido e nas montagens do Economizador e Parte superior — Não restringir / Laterais e extremidades — 1,8 m (6 pés) a partir da superfície sólida. tem conexão de abertura de 1/4 in.
- 3. Drenos e ventils NPT de 3/8 in localizados em cada cabeça do evaporador em cada extremidade do evaporador.

Evaporador padrão de dois passes. Consulte o software Packaged Chiller Builder para outras configurações.

4.

- 5. Dimensões mostradas em polegadas. As dimensões entre [] estão em milímetros.

30XSA	A	В
140	44,33 [1126]	94,76 [2407]
160	42,59 [1082]	97,08 [2466]
180	42,87 [1089]	97,67 [2481]
200	42,91 [1090]	92,71 [2355]
220	42,87 [1089]	94,25 [2394]
240	42,87 [1089]	93,07 [2364]

Figura 2b — Vista superior do chiller 30XS 140 - 160 -180 - 200 - 220 -240.

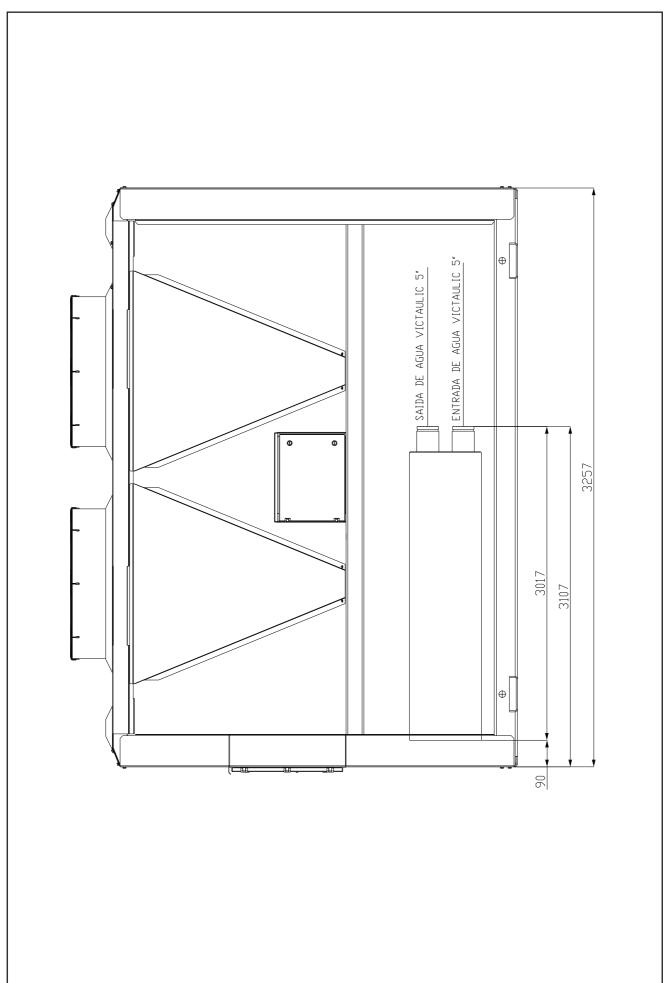


Figura 2c — Dimensões do Cooler 30XS 100 - 120.

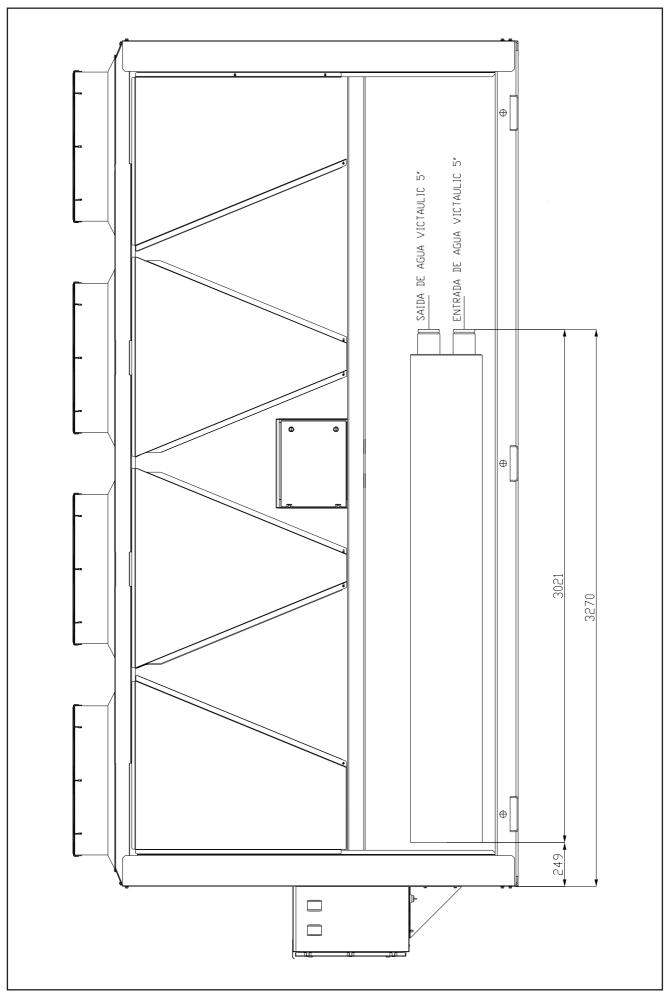


Figura 2d — Dimensões do Cooler 30XS 140 - 160.

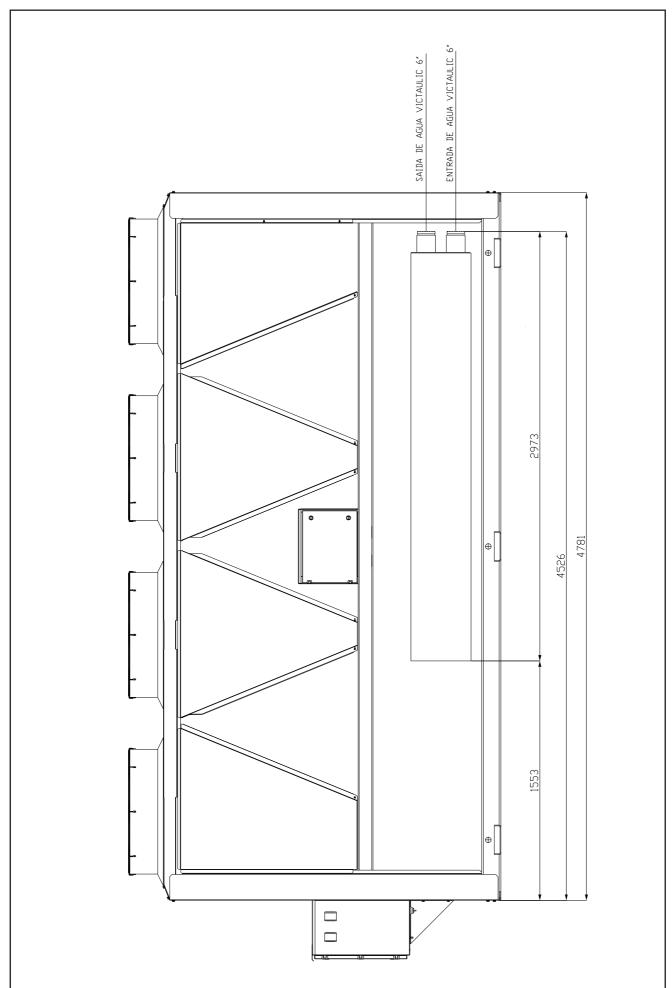


Figura 2e — Dimensões do Cooler 30XS 140 - 160.

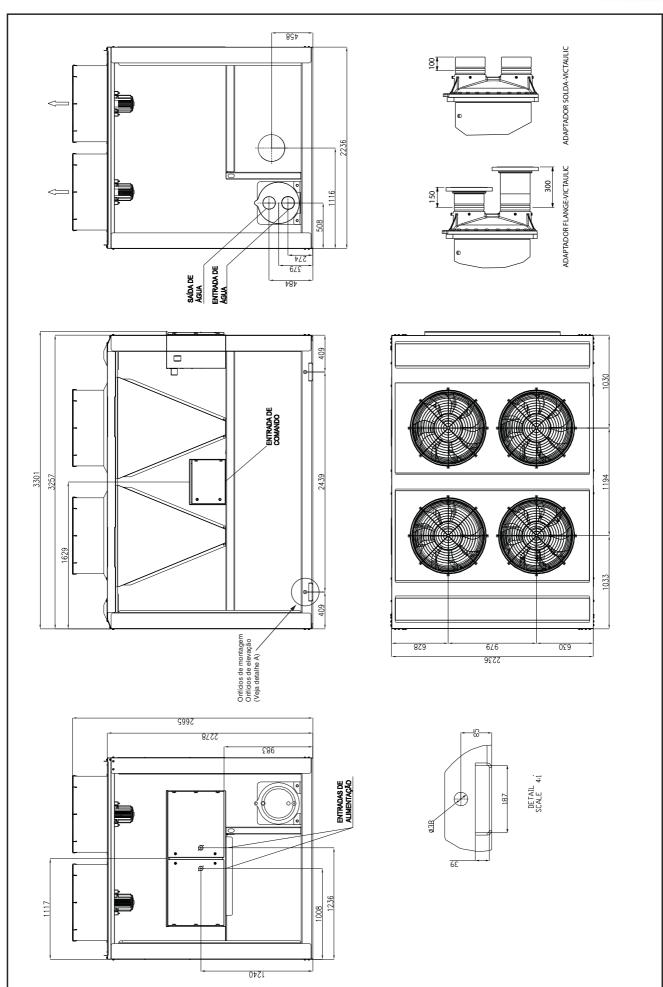


Figura 2f — Dimensões do chiller 30XS 100 - 110 - 120.

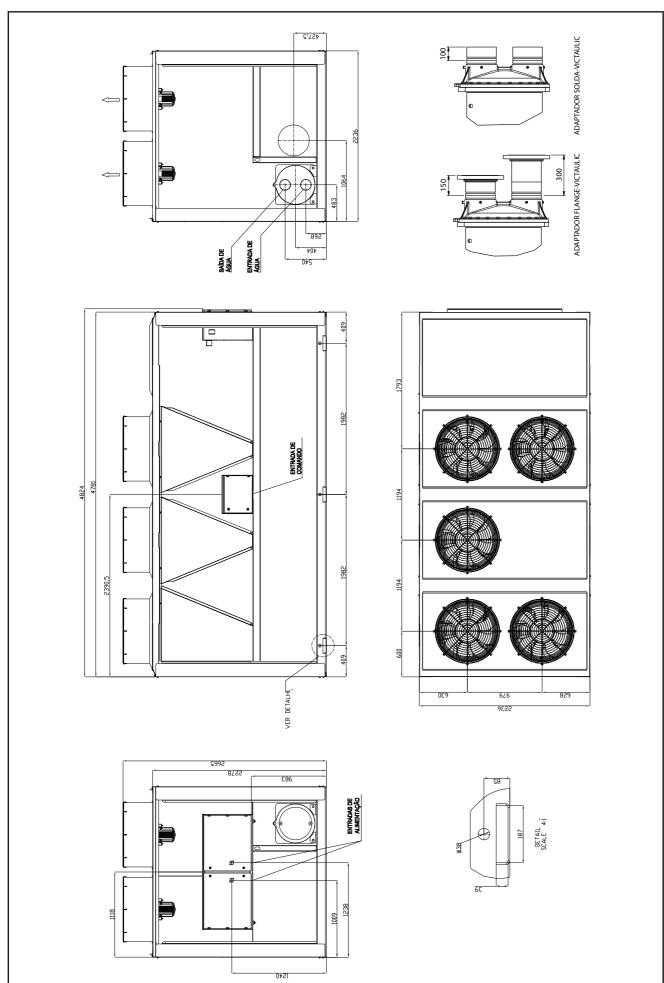


Figura 2g — Dimensões do chiller 30XS140.

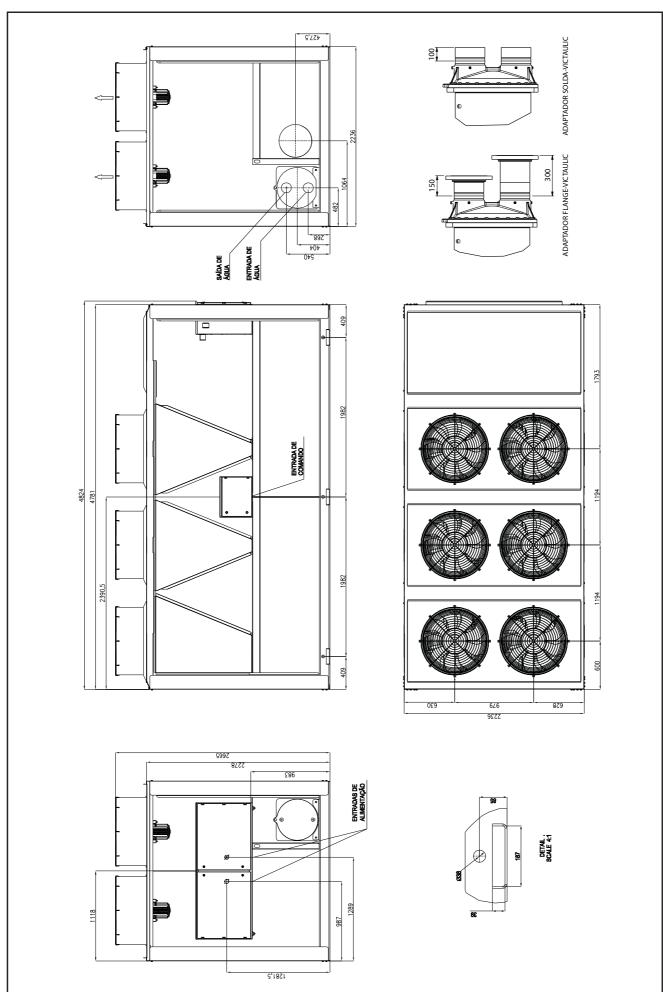


Figura 2h — Dimensões do chiller 30XS 160 - 180.

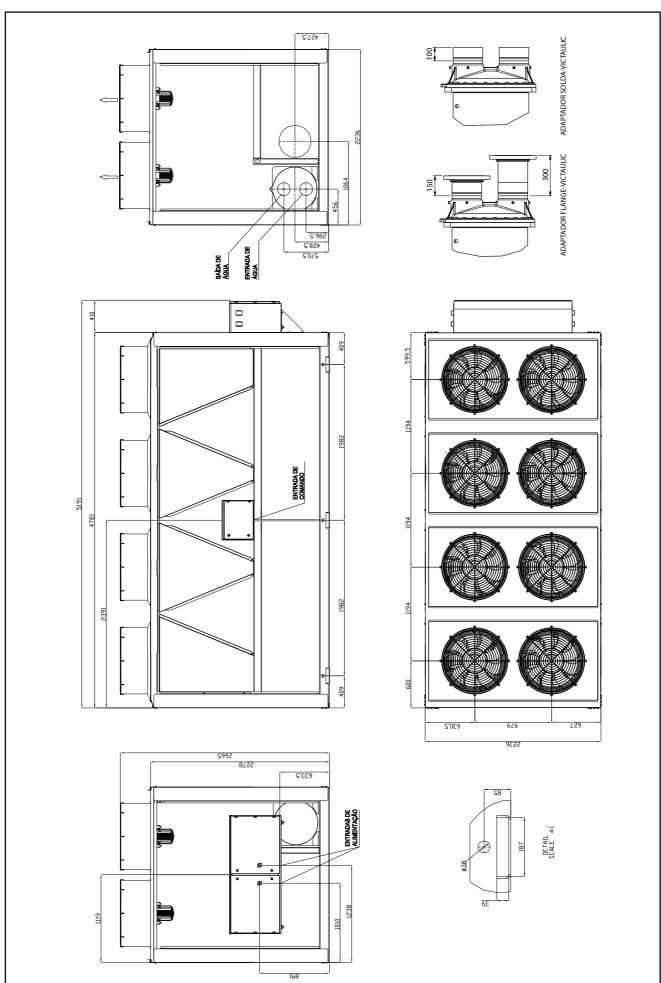


Figura 2i — Dimensões do chiller 30XS 200 - 220 - 240.

Tabela 1 - Peso de Montagem

30XS		PESO MO	NTAGEM (k	g) - Al/Cu*	
30/3	A (FE)	B (FD)	C (TE)	D (TD)	Total
100	751	676	796	720	2943
110	799	758	875	834	3266
120	787	732	830	775	3124

30XS		PESO MOI	NTAGEM (k	g) - Al/Cu*			
3073	A (FE)	B (FC)	C (FD)	D (TE)	E (TC)	F (TD)	Total
140	620	628	636	610	618	626	3738
160	653	694	735	703	745	786	4316
180	685	737	789	727	779	832	4549
200	783	762	741	825	805	784	4700
220	786	788	790	830	833	835	4862
240	829	813	797	877	860	844	5020

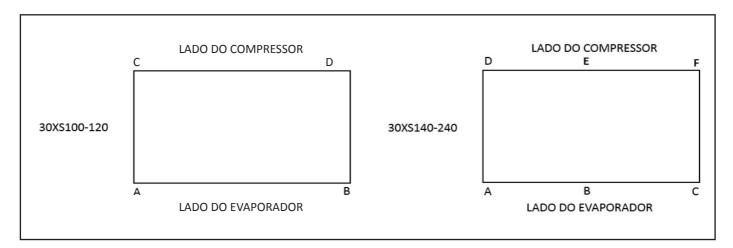


Figura 3 - Pesos de montagem da unidade (unidades com serpentina condensadora Al/Cu)

UNIDADE 30XS	100	110	120	140	160
PESO DE OPERAÇÃO (kg)			•		
Serpentinas do Condensador					
Al-Cu (Gold Fin)	2943	3266	3124	3738	4316
TIPO DE REFRIGERANTE		Sistema Co	ontrolado por EX	(V / R-134a	
Carga de Refrigerante (kg)					
Circ. A/Circ. B	61/61	61/61	61/61	92/55	102/72
COMPRESSORES		Parafusos rota	ativos duplos sei	mi-herméticos	
Quantidade			2		
Velocidade (rpm)			3500		
(Qtde) № modelo compressor Circ. A	(1) 06TSA-155	(1) 06TSA-155	(1) 06TSA-186	(1) 06TSA-155	(1) 06TSA-186
(Qtde) № modelo compressor Circ. B	(1) 06TSA-155	(1) 06TSA-186	(1) 06TSA-186	(1) 06TTA-266	(1) 06TTA-301
Carga de óleo (litros) Circ. A/Circ. B	20.8/20.8	20.8/20.8	20.8/20.8	20.8/20.8	23.7/23.7
Estágio mínimo de capacidade (%)			•	•	•
Padrão	15	15	15	14	15
Opcional	9	9	9	8	10
EVAPORADOR		Inundado / Ti _l	po Casco e Tubo	(shell & tube)	
Volume líquido de água (litros)	62.5	70.0	70.0	75,7	87.1
Pressão máxima do refrigerante (kPa)	1516.8	1516.8	1516.8	1516.8	1516.8
Pressão máxima no lado da água (kPa)	2068.0	2068.0	2068.0	2068.0	2068.0
CONEXÕES DE ÁGUA					
Dreno (NPT, in.)			3/8		_
Entrada e saída, padrão, Victaulic (in.)	5	5	5	5	5
Nº de passes	2	2	2	2	2
VENTILADORES DO CONDENSADOR		Tipo axial	coberto / Desca	rga vertical	
Velocidade padrão do ventilador (rpm)			1140		
№ de pás Diâmetro (mm)	9762	9762	9762	9762	9762
Nº de ventiladores (Circ. A/Circ. B)	2/2	2/2	2/2	3/2	4/2
Vazão de ar total (L/s)	23409	23409	23409	29261	35114
SERPENTINAS DO CONDENSADOR					
Nº de serpentinas (Circ. A/Circ. B)	2/2	2/2	2/2	3/2	4/2
Área total de face (m²)	10,28	10,28	10,28	12,85	15,42
DIMENSÕES DA CHASSI (mm)					
Comprimento		32	57		4781
Largura			2236		
Altura			2665		

LEGENDA:

Cu - Cobre

Al - Alumínio

EXV - Válvula de expansão eletrônica

Tabela 2a - Características Técnicas Gerais 30XS 100 a 160.

UNIDADE 30XS	180	200	220	240
PESO DE OPERAÇÃO (kg)		•		
Serpentinas do Condensador				
Al-Cu (Gold Fin)	4549	4700	4862	5020
TIPO DE REFRIGERANTE		Sistema Controlad	o por EXV / R-134a	
Carga de Refrigerante (kg)				
Circ. A/Circ. B	93/93	102/102	97/91	122,5/122,5
COMPRESSORES	Pa	arafusos rotativos d	uplos semi-hermétic	cos
Quantidade			2	
Velocidade (rpm)		35	500	
(Qtde) № modelo compressor Circ. A	(1) 06TTA-266	(1) 06TTA-301	(1) 06TTA-301	(1) 06TTA-356
(Qtde) № modelo compressor Circ. B	(1) 06TTA-266	(1) 06TTA-301	(1) 06TTA-356	(1) 06TTA-356
Carga de óleo (litros) Circ. A/Circ. B	23.7/23.7	23.7/23.7	24.65/24.65	25.6/25.6
Estágio mínimo de capacidade (%)		•		
Padrão	11	11	15	15
Opcional	7	8	10	10
EVAPORADOR	In	undado / Tipo Casco	o e Tubo (shell & tub	oe)
Volume líquido de água (litros)	96.5	104.1	119.2	128.7
Pressão máxima do refrigerante (kPa)	1516.8	1516.8	1516.8	1516.8
Pressão máxima no lado da água (kPa)	2068.0	2068.0	2068.0	2068.0
CONEXÕES DE ÁGUA				
Dreno (NPT, in.)		. 3	/8	
Entrada e saída, padrão, Victaulic (in.)	6	6	6	6
Nº de passes	2	2	2	2
VENTILADORES DO CONDENSADOR		Tipo axial coberto	/ Descarga vertical	
Velocidade padrão do ventilador (rpm)	m) 1140			
№ de pás Diâmetro (mm)	9762	9762	9762	9762
№ de ventiladores (Circ. A/Circ. B)	4/2	4/4	4/4	4/4
Vazão de ar total (L/s)	35114	46818	46818	46818
SERPENTINAS DO CONDENSADOR		•		
№ de serpentinas (Circ. A/Circ. B)	4/2	4/4	4/4	4/4
Área total de face (m²)	15,42	20,56	20,56	20,56
DIMENSÕES DA CHASSI (mm)				
Comprimento		47	781	
Largura		22	236	
Altura		26	665	

LEGENDA:

Cu - Cobre

Al - Alumínio

EXV - Válvula de expansão eletrônica

Tabela 2b - Características Técnicas Gerais 30XS 180 a 240.

FIXAR A UNIDADE EM CAMINHÃO OU OUTRO MEIO DE TRANSPORTE

Para a correta fixação da unidade na carroceria de um caminhão ou outro meio de transporte, a Carrier recomenda que a cinta de fixação seja sempre apoiada sobre os suportes de proteção de madeira, localizados entre os vãos do local de descarga de ar quente das serpentinas condensadoras. Veja a etiqueta adesiva abaixo. Esta etiqueta também está localizada na lateral da unidade.

Figura 4 - Etiqueta de fixação da unidade.

IÇAR A UNIDADE (Veja a Figura 5)

As unidades 30XS são projetadas para serem içadas e é importante usar esse método. Há furos na base da estrutura, indicados para içamento (veja a etiqueta de içamento na unidade). Exige-se olhais fornecidos em campo para facilitar o içamento. Prenda os olhais aos trilhos da base nos pontos anotados na etiqueta de içamento. Veja a Tabela 3 para o número de ponto de içamento para cada unidade.

⚠ IMPORTANTE

BASE GALVANIZADA A FOGO

Este revestimento oferece uma maior durabilidade e resistência em relação aos tratamentos superficiais convencionais.

Não utilize empilhadeiras para mover as unidades.

Utilize barras de içamento para manter os cabos ou cintas livres nas laterais da unidade. Como proteção adicional, podem ser colocadas folhas de madeira compensada nas laterais da unidade, por trás dos cabos ou cintas. Passe os cabos ou cintas em um ponto de içamento central de maneira que o ângulo a partir da horizontal não seja inferior a 45 graus. Içe e baixe a unidade cuidadosamente.

Veja a Figura 5 para centros de gravidade de içamento.

Para embarque, algumas unidades domésticas e todas as unidades de exportação são montadas em um palete de madeira sob toda a base da unidade.

O palete pode ser retirado antes de a unidade ser transportada até o local de instalação. Suspenda a unidade por cima para remover o palete.

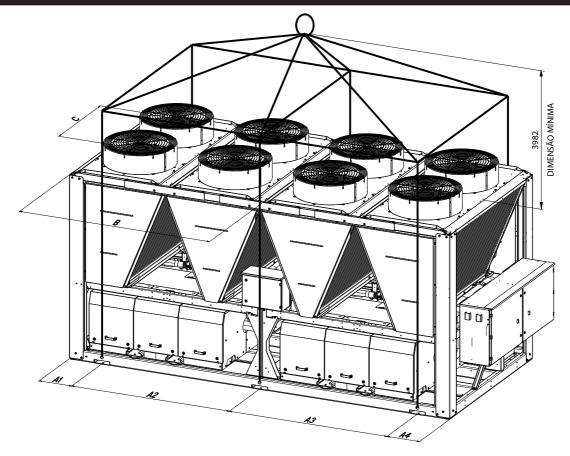
Se a unidade tiver sido enviada com um saco de proteção, o saco deve ser removido para que se obtenha acesso aos furos de içamento no trilho da base.

Se não for possível içar a unidade, ela poderá ser movida sobre roletes ou arrastada. Quando a unidade é movida sobre roletes, deverá ser removido, se houver, o palete. Para içar a unidade, utilize macacos nos pontos de içamento. Utilize um número mínimo de roletes para distribuir a carga de maneira que os roletes não fiquem com mais de 1,8 m (6 ft) de distância. No caso de arrastar a unidade, içe-a conforme descrito acima, e coloque a unidade sobre um calço. Aplique a força de movimento no calço e não na unidade. Quando chegar ao seu local final, levante a unidade e remova o calço. Se a unidade tiver sido fabricada com proteção da serpentina, ela deverá ser removida antes de por em funcionamento (start-up). O saco de proteção para unidade de exportação deve ser removido antes do start-up.

Tabela 3 - Número de pontos de içamento para 30XS

UNIDADE 30XS	N° DE PONTOS DE IÇAMENTO
100 a 120	4
140 a 240	6

ATENÇÃO


TODOS OS PAINÉIS DEVEM ESTAR MONTADOS E BEM FIXADOS ANTES DE INICIAR O IÇAMENTO. NÃO TENTE DESLOCAR A UNIDADE SE A BASE DE MADEIRA NÃO FOR FORNECIDA.

WARNING

ALL PANELS MUST BE FITTED AND WELL FIXED BEFORE STARTING RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

- 2- SUSPENDA COM ALTURA MÍNIMA DE 7620mm A UNIDADE COM CORRENTES OU CINTAS PARA FACILITAR O BALANCEAMENTO.
- 3- SE UTILIZADO PONTO CENTRAL PARA IÇAMENTO, ESTE DEVERÁ ESTAR NO MÍNIMO 3982mm ACIMA DO TOPO DA UNIDADE.
 4- OS ESPAÇADORES FEITOS DE AÇO DEVEM TER COMPRIMENTO DE 2438mm.DEVE SER COLOCADO ACIMA DA UNIDADE PARA REDUZIR OS RISCOS DE DANOS A ESTRUTURA E O ALETADO DA MÁQUINA.
- 5- A UNIDADE TANBÉM PODE SER MOVIDA POR ROLETS. NESTE CASO, O SKID DA UNIDADE (SE EQUIPADO), DEVE SER REMOVIDO. PARA LEVANTAR A UNIDADE, USE APOIOS NOS PONTOS DE REFERÊNCIADO EQUIPAMENTO, QUE DEVE TER O MÍNIMO DE UM ROLETE A CADA 1829mm PARA MELHOR DISTRIBUIR A CARGA. 6- VERIFIQUE OS DADOS DE ICAMENTO QUANTO AO PESO DE EMBARQUE DA UNIDADE

- 1- 1.5 in.DIAMETER, LIFTING HOLES PROVIDED FOR FIELD SUPPLIED CLEVIS.
- 2- RIG WITH A MINIMUN OF 25ft (7620mm) LENGHT CHAINS OR CABLES.
 3- IF CENTRAL LIFTING POINTS IS USED,IT MUST BE A MINIMUN OF 13ft.(3962mm) AOVE THE TOP OF THE UNIT.
- 4- SPREADER BARS MADE FROM STEEL OR DOUBLE NAILED, ANDE NOTCHED 2x6's APROXIMATELY 8 ft. (2438mm) LONG, MUST BE PLACED JUST AOVE THE TOP OF THE UNIT (AND STACKS) TO REDUCE THE RISK OF DAMAGE TO THE TOP OF THE UNIT AND COILS.
 5- IF OVERHEAD RIGGING IS NOT AVAILABLE, THE UNIT CAN BE MOVED ON ROLLERS OR DRAGGED. WHEN UNITS IS MOVED ON ROLLERS, THE UNIT SKID, IF EQUIPPED, MUST BE REMOVED. TO LIFT
- USE A MINIMUN OF ONE ROLLER EVERY 6 ft. (1829mm) TO DISTRIBUTE THE LOAD. IF THE UNIT IS TO BE DRAGGED, LIFT THE UNIT AS DESCRIBED ABOVE, AND PLACE UNIT ON A PAD, NOT THE UNIT. WHEN IN ITS FINAL LOCATION, RAISE THE UNIT AND REMOVE THE PAD.
- 6- CHECK BILL OF LADING FOR SHIPPING WEIGHT OF UNIT.

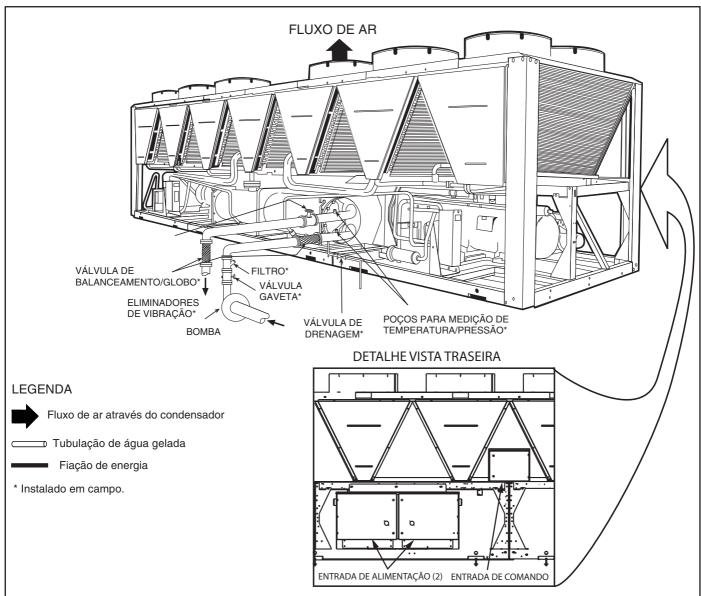
A UNIDADE DEVE SER ICADA POR TODOS OS PONTOS DE ICAMENTO EXISTENTES NO CHASSI A UNIDADE NÃO PODE SER IÇADA POR EMPILHADEIRA Peso Máximo Peso Máximo Furação para Içamento Centro de Gravidade **Modelos** sem embalagem com embalagem Α1 АЗ lb lb Kg Kg in. mm in. mm in. mm in. mm in. mm 30XSA100 6489 2943 6728 3051 16 406 96 2439 61,6 1565 28,9 735 30XSA110 7199 3265 7438 3373 16 406 96 2439 62,9 1598 28,6 727 30XSA120 6888 3125 7128 3233 16 406 96 2439 62.4 1585 29.8 757 30XSA140 8239 3737 8543 3874 16 406 78 1981 78 1981 94,8 2407 31,0 787 30XSA160 9517 4317 9821 4454 16 406 78 1981 78 1981 97,1 2466 29,3 744 30XSA180 10030 4549 10334 4686 16 406 78 1981 78 1981 97,7 2482 29,7 755 30XSA200 10360 4699 10679 4843 16 406 78 1981 78 1981 92,7 2355 30,4 773 30XSA220 10718 4862 11038 5006 16 406 78 1981 78 1981 94,3 2394 31,1 789 30XSA240 11065 5019 11385 5163 16 406 78 1981 78 1981 93,1 2365 31,6 803

ATENÇÃO

NÃO SERÃO COBERTOS PELA GARANTIA CARRIER, DANOS CAUSADOS AO EQUIPAMENTO DEVIDO AO IÇAMENTO NÃO TER SIDO REALIZADO CONFORME INSTRUÇÕES ACIMA DESCRITAS.

Figura 5 - Detalhe da etiqueta de elevação das unidades 30XS_100 a 30XS_240.

Etapa 3 - Conexões da Tubulação de Dreno e Água do Evaporador


Veja as Figuras 12 a 15 para aplicações de tubulação.

⚠ CUIDADO

Remova a chave de fluxo da água gelada e os termistores de entrada e de saída de água antes da soldagem da conexão da tubulação. Reinstale a chave de fluxo e os termistores após a soldagem ser concluída. A não remoção desses dispositivos pode causar dano à unidade.

GERAL

As conexões Victaulic permitem conexão com acoplamentos das linhas de água para os evaporadores em todas as unidades 30XS. Uma chave de fluxo é instalada em fábrica na lateral do bocal de entrada de água. Veja a Figura 9. Veja a Tabela 3 para a faixa operacional da unidade 30XS.

OBSERVAÇÕES:

- 1. O chiller deve ser instalado nivelado para manter o retorno adequado do óleo ao compressor.
- A tubulação mostrada é apenas de guias de pontos de conexão gerais e não é destinada a uma instalação específica.
 A fiação e tubulação exibidas são destinadas a uma rápida visão geral do sistema e não estão de acordo com os padrões reconhecidos.
- 3. Toda a interligação elétrica deve cumprir com os códigos locais e nacionais aplicáveis.
- 4. Toda a tubulação deve seguir as técnicas padrões de tubulação. Consulte o Manual de Projeto de Sistema Carrier ou guia ASHRAE (So ciedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar-condicionado) adequado para obter detalhes.
- 5. O conjunto de adaptadores flange/victaulic OU solda/victaulic oferecem uma maior flexibilidade nas interligações hidráulicas em campo, adaptando as conexões de água do evaporador do tipo Victaulic® para conexões do tipo flangeadas conforme a Norma ASME/ANSI B16.5 ou do tipo solda.

Figura 6 - Fiação e tubulação típica do evaporador inundado 30XS (unidade sem pacote hidrônico)

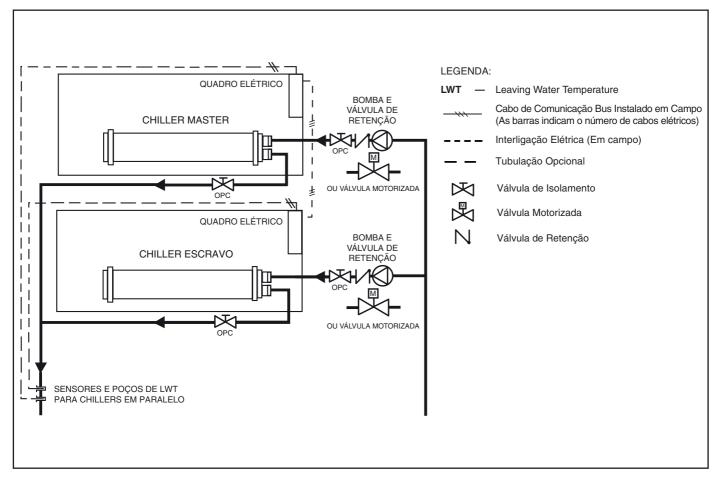


Figura 7 - Operação de chillers duplos em paralelo

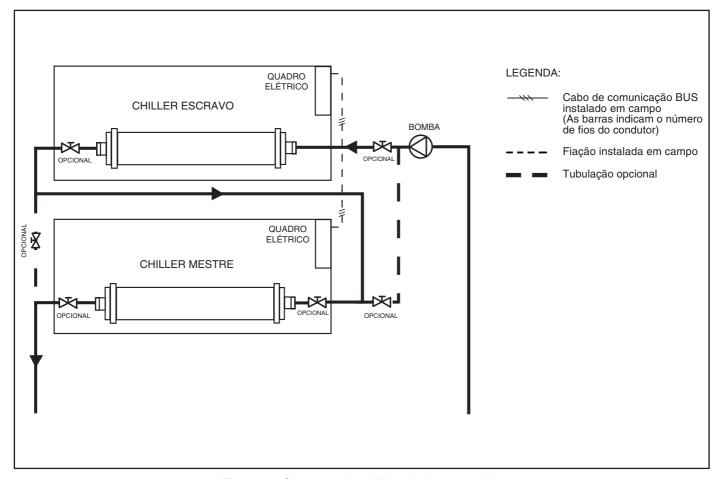
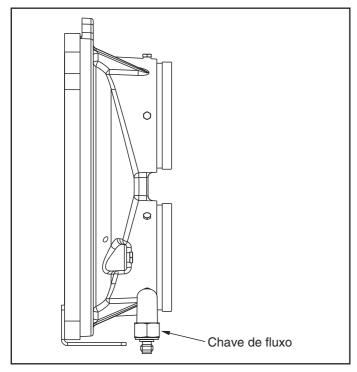



Figura 8 - Operação de chillers duplos em série

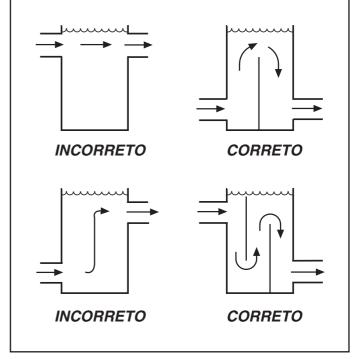


Figura 9 - Chave de fluxo

Figura 10 - Defletores do tanque

UNIDADES DE EVAPORADOR INUNDADO

Separação do ar do evaporador inundado - Para a operação adequada do sistema, é essencial que os circuitos da água sejam instalados com meios adequados para gerenciar o ar no sistema. O ar livre no sistema pode causar ruído, reduzir a saída do terminal, interromper o fluxo, ou até mesmo causar falha na bomba devido à cavitação. Para sistemas fechados, o equipamento deve ser instalado para eliminar todo o ar do sistema.

A quantidade de ar que a água pode manter na solução depende da pressão e temperatura da mistura de água/ ar. O ar é menos solúvel em temperaturas mais altas e em pressões mais baixas. Portanto, a melhor separação pode ser feita no ponto da temperatura da água mais alto e pressão mais baixa. Normalmente, este ponto seria o lado da sucção da bomba conforme a água está retornando do sistema ou terminais. Este é geralmente o lugar ótimo para instalar um separador de ar, se possível.

- Instale os ventis de ar automáticos em todos os pontos altos no sistema. (Se a unidade 30XS está localizada no ponto alto do sistema, uma abertura pode ser instalada na saída da tubulação do trocador de calor na pórtico fêmea 1/4 in NPT).
- 2. Instale um separador de ar no circuito da água, no local onde a água está em temperaturas mais altas e pressões mais baixas geralmente na tubulação de retorno da água do chiller. No sistema secundário-primário, a água de temperatura mais alta está geralmente no circuito secundário, perto do desacoplador. A preferência deve ser dada para esse ponto do sistema (veja a Figura 13). Nos separadores de ar centrífugos ou em linha já estão disponíveis no campo.

Pode não ser possível instalar todos os separadores de ar no local da temperatura mais alta e pressão mais baixa. Em tais casos, a preferência deve ser dada para os pontos de temperatura mais alta. É importante que o tubo seja dimensionado corretamente de forma que o ar livre possa ser movido para o ponto de separação. Geralmente, uma velocidade da água de pelo menos 0,6 m/s (2 ft/s) irá manter livre a entrada de ar e evitar a formação de bolsões de ar.

Os ventis automáticos devem ser instalados em todos os pontos elevados fisicamente no sistema de forma que o ar possa ser eliminado durante a operação do sistema. As mesmas precauções também devem ser feitas para ventilação manual durante o preenchimento do circuito de água.

Unidades do evaporador Inundado sem o Pacote de Bomba Hidrônica - Quando virado para a lateral do evaporador da unidade, a conexão de entrada de água (retorno) está na parte inferior. É necessário que um filtro fornecido em campo com um tamanho mínimo de malha de 20 mesh seja instalado a uma distância de 3,05 m (10 ft) da entrada do evaporador para evitar que os detritos danifiquem os tubos internos do evaporador. A conexão de água de saída (fornecimento) está na parte superior. O evaporador tem conexões do tipo Victaulic no lado da água (siga as instruções de conexão conforme fornecido pelo fabricante do acoplamento). Instale um suporte adequado para a tubulação. Se grades de segurança foram adicionadas, os furos devem ser cortados nas grades para o isolamento e tubulação em campo. Veja a Figura 14 para o diagrama da tubulação típica de uma unidade 30XS.

Uma conexão de dreno está localizada na extremidade da saída de água (fornecimento) do evaporador. Veja as Figuras de 2a a 2i para a localização da conexão. Isole a tubulação do dreno (da mesma maneira que a tubulação de água gelada) para pelo menos 305 mm (12 in.) a partir da unidade.

Controle do Chiller Duplo do Evaporador Inundado -

O controle ComfortLink™ permite que 2 chillers (instalados em paralelo ou em série) operem como um único equipamento de água gelada com as funções de controle padrão coordenadas pelo controle do chiller principal. Esta característica do ComfortLink™ padrão exige um link de comunicação entre os 2 chillers.

Este tipo de controle oferece diversas vantagens:

- Redundância (circuitos múltiplos);
- Melhor controle da carga baixa (capacidade de tonelagem mais baixa);
- Reduz os pesos de elevação (duas máquinas ao invés de uma máquina grande);
- Operação lead-lag do chiller (nivela o desgaste entre as duas máguinas).

Sensor de Saída de Água de Duplo Chiller -

Se o algoritmo de duplo chiller for utilizado e as máquinas instaladas em paralelo, um sensor de água gelada duplo deve ser instalado em cada módulo.

Instale os poços dos sensores no coletor comum da saída de água. Veja as Figuras 7 e 11. NÃO reposicione os termistores da água de saída do chiller. Eles devem permanecer no lugar para que a unidade opere corretamente.

O recipiente do termistor é um encaixe de 1/4 in. NPT para prender o poço na tubulação. A tubulação deve ser perfurada e soldada no poço. Selecione uma posição que permita a remoção do termistor sem qualquer restrição.

Uma vez introduzido o poço, instale os termistores. Introduza o termistor no poço até o anel O-Ring alcançar o corpo do poço. Utilize a porca no termistor para fixar o termistor no lugar. Quando o termistor estiver no lugar, recomenda-se fazer um laço do fio do termistor e prendê-lo com um laço do fio ao tubo de água gelada. Veja a Figura 12. A aplicação do duplo chiller em série é mostrada na Figura 8.

Sensores adicionais não são necessários para aplicações com duplo chiller em série. Para um controle de chiller duplo, a Carier Comfort Network (CCN) deve ser conectada entre os dois chillers. Veja a seção da fiação do barramento de comunicação Carrier Comfort Network® para maiores informações.

Operação de duplo chiller em paralelo (Veja a Figura 7) -

A operação dos chillers em paralelo é a opção recomendada para controlar chillers duplos. Neste caso, cada chiller deve controlar a sua própria bomba dedicada ou válvula de isolamento. As válvulas de balanceamento são recomendadas para assegurar a vazão apropriada em cada chiller. Dois sensores da temperatura de saída da água de dois chillers instalados e fornecidos em campo são necessários, sendo um para cada módulo para que esta função opere corretamente.

Considere adicionar válvulas de bloqueio para isolar cada chiller no caso de manutenção em uma máquina e também para permitir uma capacidade parcial do outro chiller.

Operação de duplo chiller em Série (Veja a Figura 8) -

A operação do chiller em série é um método de controle alternativo oferecido pelo sistema de controle ComfortLink™. Determinadas aplicações podem exigir que dois chillers sejam interligados em série.

Para faixas nominais de 5,6°C (10°F), utilize a disposição do evaporador de 1 passe para reduzir a queda de pressão no lado de líquido. Utilize a disposição com 2 passes para uma vazão baixa e aplicações de elevação da alta temperatura do evaporador. Veja a tabela 4 - Vazões máximas e mínimas do evaporador 30XS.

Considere adicionar uma tubulação e válvulas de bloqueio para isolar cada chiller no caso de manutenção em uma máquina e também para permitir uma capacidade parcial do outro chiller.

⚠ IMPORTANTE

Ventis automáticos devem ser posicionados em locais acessíveis para fins de manutenção e protegidos contra o congelamento.

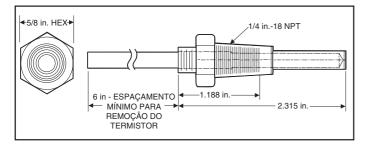


Figura 11 - Poço do Termistor Duplo da Saída de Água (Número da peça 00PPG00008000)

Controle da bomba de refrigeração do evaporador

É necessário utilizar um controle da bomba do evaporador em todos os chillers, exceto se a bomba de água gelada operar continuamente ou se o sistema de água gelada contiver uma solução anticongelante apropriada.

É necessário intertravar eletricamente o chiller com o acionamento da bomba de água gelada

O intertravamento deve ser conectado aos terminais disponíveis na placa principal de controle. Se o controle da bomba do evaporador não é utilizado, também é necessário que a saída da bomba do evaporador seja utilizada como um limite do circuito de controle da bomba de água gelada para fornecer uma proteção adicional contra congelamento.

Consulte o controle e esquema elétrico para a conexão correta da saída da bomba do evaporador. A saída da bomba do evaporador permanecerá energizada durante 30 segundos depois que todos os compressores pararem devido ao comando OFF. Caso um alarme de proteção contra congelamento seja gerado, a saída da bomba do evaporador será energizada independentemente da configuração do software de controle da bomba do evaporador.

A saída da bomba do evaporador também é energizada todas as vezes que um compressor é ligado e quando determinados alarmes são gerados. Um sensor térmico de vazão é instalado em fábrica no bocal de entrada de líquido para impedir a operação sem vazão através do evaporador. Veja a figura 19.

O sensor de vazão é conectado em fábrica. É necessário configurar corretamente o software de parâmetros de controle da bomba do evaporador para impedir um possível congelamento do evaporador.

Consulte o Manual de Serviços para mais informações.

↑ CUIDADO

Aplicações que utilizam água tratada como o fluido de circulação exige que a bomba de circulação seja controlada diretamente pelo chiller. Operação com água tratada não é totalmente confiável, em caso de perda de alimentação do chiller ou da bomba de circulação. Dano de congelamento devido à perda de energia ou desabilitação do controle da bomba do chiller nos sistemas de água fresca irá prejudicar ou, de outra maneira, afetar de forma negativa a garantia.

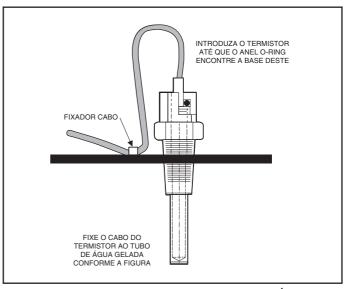


Figura 12 - Termistor Duplo da Saída de Água (Número da peça 00PPG000008105)

Unidades com salmoura (Brine)

Modificações especiais em fábrica para as unidades são necessárias para permitir que elas operem em temperaturas de fluido menores que 4,4°C (40°F). Certifique-se que o líquido tenha glicol inibido suficiente ou outra solução anticongelamento resistente à corrosão adequada para prevenir o congelamento do evaporador.

PREPARAÇÃO PARA OPERAÇÃO AO LONGO DE UM ANO

Nas áreas onde a tubulação ou a unidade estiver exposta a 0°C (32°F) ou a temperaturas ambiente menores, a proteção anticongelante é exigida e deve-se utilizar glicol inibido ou outra solução anticongelante resistente à corrosão e fitas para o aquecedor elétrico. As fitas do aquecedor na tubulação devem ter uma classificação para temperaturas ambiente da área e serem cobertos com um isolamento de células fechadas com espessura apropriada. Direcione a força das fitas do aquecedor a partir de um disjuntor com fusível separado. Monte o disjuntor próximo da unidade de acordo com os códigos locais ou NBR 5410. Identifique o disjuntor na fonte de energia do aquecedor tipo fita com advertência de que a energia não pode ser desligada, exceto ao prestar manutenção à unidade.

Uma conexão de dreno está localizada na parte inferior da cabeça do evaporador ou parte inferior da revestimento do evaporador. Veja as Figuras de 1 a 9 para a localização da conexão. Instale válvulas de bloqueio na linha do dreno antes de preencher o sistema com líquido.

⚠ IMPORTANTE

Adicionar a solução anticongelamento é o único meio seguro de se proteger a unidade do congelamento se o aquecedor falhar ou se a energia elétrica for interrompida ou perdida enquanto as temperaturas estiverem abaixo de 0°C (32°F).

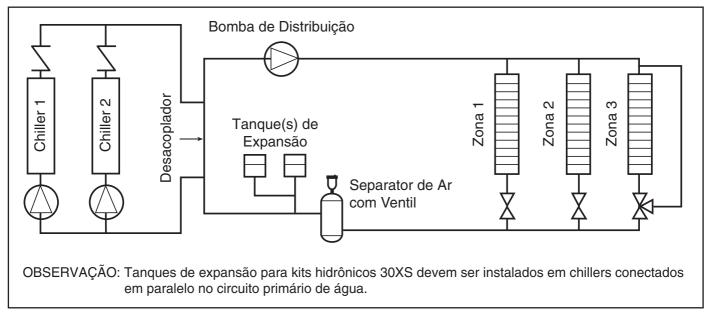


Figura 13 - Separador de Ar Típico e Localização do Tanque de Expansão nos Sistemas Secundário-Primário

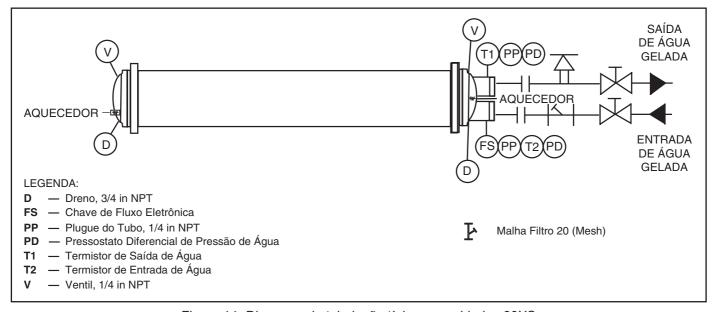


Figura 14- Diagrama de tubulação típica em unidades 30XS



Tabela 4 - Vazões máximas e mínimas do evaporador 30XS

		ITEM			MÍN	IMO	MÁX	(IMO
	Temperatur	a de saída de á	gua do evaporador*		4.4°C	(40°F)	15.0°C	(60°F)
	Temperatura	de entrada de	água do evaporador**		7.2°C (45°F)		21.1°C	(70°F)
30XS	Taxa de Vaz	ão Nominal	Evaporador	Nº de	Vazão I	Mínima	Vazão Máxima	
3073	(gpm)	(I/s)	Evaporador	passes	(gpm)	(I/s)	(gpm)	(I/s)
100	225.5	14.2	Padrão, Inundado	2	101	6.4	403	25.4
110	244.9	15.5	Padrão, Inundado	2	125	7.9	501	31.6
120	264.8	16.7	Padrão, Inundado	2	125	7.9	501	31.6
140	317.8	20.1	Padrão, Inundado	2	134	8.5	538	33.9
160	365.1	23.0	Padrão, Inundado	2	165	10.4	660	41.6
180	409.6	25.8	Padrão, Inundado	2	202	12.7	807	50.9
200	463.9	29.3	Padrão, Inundado	2	223	14.1	892	56.3
220	505.9	31.9	Padrão, Inundado	2	235	14.8	941	59.4
240	545.8	34.4	Padrão, Inundado	2	266	16.8	1063	67.1

^{*} Para as aplicações que exigem operação de temperatura de saída de água do evaporador com menos de 4,4°C (40°F), as unidades requerem o uso de anticongelamento e a aplicação pode exigir a opção de brine (salmoura). Entre em contato com seu representante Carrier local para maiores informações.

OBSERVAÇÕES:

- 1. As unidades 30XS irão iniciar e manter-se com temperaturas de circuito até 35°C (95°F).
- As vazões nominais exigidas em condições AHRI de temperatura de saída de água é 7°C (44°F), temperatura de entrada de água 12°C (54°F), ambiente 35°C (95°F).
 Fator de incrustação 0.00010 ft²-h-F/Btu (0.000018 m²-K/kW).
- 3. Para obter o controle da temperatura adequado, o volume do fluido do circuito evaporador deve ser de pelo menos 3,23 l/kW (3 gal/ton) da capacidade nominal do chiller para o ar condicionado e pelo menos 6,5 l/kW (6 gal/ton) para sistemas ou aplicações de processo que devem operar em baixas temperaturas ambiente (abaixo de 0°C [32°F]).

^{**} Para aplicações que exigem operação de temperatura de entrada de água no evaporador com menos de 7,2°C (45°F), entre em contato com seu representante Carrier local para a seleção da unidade utilizando o catálogo eletrônico da Carrier.

Etapa 4 — Preencher o Circuito de Água Gelada

⚠ IMPORTANTE

IMPORTANTE: Antes de ligar a unidade, certifique-se de que o ar foi purgado do sistema.

⚠ AVISO

Em aplicações com baixa temperatura ambiente (abaixo de 0°C [32°F]) e/ou em aplicações com baixa temperatura de saída de água (abaixo de 4,4°C [40°F]), deve ser utilizada (como fluido de circulação através do evaporador) uma solução anticongelamento adequada (e de concentração apropriada) para as condições operacionais específicas, a fim de evitar congelamento e danos ao sistema.

Operar erroneamente o sistema sem uma solução anticongelamento com uma concentração adequada irá prejudicar ou afetar de forma negativa a garantia, pois deve resultar em danos devido ao congelamento.

A bomba de água gelada (se equipada) é classificada para serviço de 1034 kPa (150 psig). A máxima pressão no lado da água do evaporador é 2068 kPa (300 psig). Verifique a classificação da pressão para todos os dispositivos de água gelada instalados. Não exceda a menor pressão dos dispositivos do sistema.

LIMPEZA DO SISTEMA DE ÁGUA

Limpeza do sistema de água adequada é de vital importância. Partículas excessivas no sistema de água pode causar desgaste excessivo da vedação da bomba, reduzir ou parar o fluxo e causar danos aos outros componentes.

- Instale uma derivação (bypass) temporária em torno do chiller para evitar a circulação de água suja e partículas dentro do pacote de bomba e chiller durante a descarga. Utilize uma bomba de circulação temporária durante o processo de limpeza. Além disso, certifiquese que existe a capacidade de completar a drenagem do sistema após a limpeza. Veja a Figura 15.
- Certifique-se de utilizar um agente de limpeza que seja compatível com todos os materiais do sistema. Seja especialmente cuidadoso se o sistema conter quaisquer componentes em alumínio ou galvanizados. Ambos os agentes de limpeza detergente dispersante e alcalino dispersante estão disponíveis.

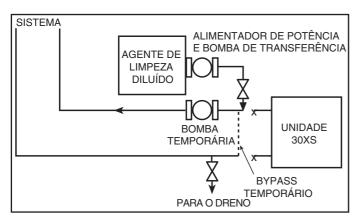


Figura 15 - Configuração Típica para o Processo de Limpeza

- 3. É recomendado preencher o sistema através do manômetro de água. Isto fornece um ponto de referência para as futuras leituras de volume do circuito, e também estabelece a quantidade correta de limpador necessário para alcançar a concentração exigida.
- 4. Utilize uma bomba de transferência/alimentadora para misturar a solução e preencher o sistema. Circule o sistema de limpeza para a quantidade de tempo recomendado pelo fabricante do agente de limpeza.
 - Após a limpeza, drene o fluido de limpeza e lave o sistema com água fresca.
 - b. Uma quantidade pequena de resíduo de limpeza no sistema pode ajudar a manter o desejado pH da água, levemente alcalino de 8 a 9. Evite um pH maior do que 10, visto que isso irá afetar de forma contrária os componentes de vedação da bomba.
 - c. Um filtro de fluxo lateral é recomendado (veja a Figura 16 durante o processo de limpeza). A vazão lateral do filtro deve ser suficiente para filtrar o todo o volume de água a cada 3 a 4 horas. Troque os filtros com frequência conforme necessário durante o processo de limpeza.
 - d. Remova o bypass temporário quando a limpeza estiver concluída.

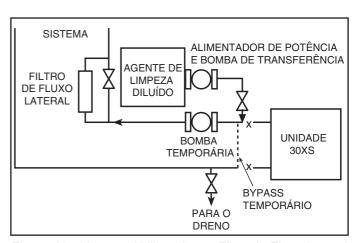


Figura 16 - Limpeza Utilizando um Filtro de Fluxo Lateral

Os controles ComfortLink da Carrier fornecidos têm um recurso embutido para lembrar os operadores ou proprietários da construção de limpar o filtro em um intervalo de tempo pré-definido. Sistemas adequadamente instalados, limpos e bem conservados raramente irão precisar de filtro limpo após o início do uso. Este intervalo de tempo é configurado pelo usuário.

Para definir o tempo para o parâmetro, vá para **Time Clock→MCFG→W.FIL** na tela Navigatorm portátil. Para definir o tempo para o parâmetro com o visor Touch Pilottm, vá para **Main Menu→Service→MAINTCFG→wfilter_c.** Valores para este item são colocados em dia.

TRATAMENTO DA ÁGUA

Preencha o circuito fechado com água (ou brine (salmoura)) e com um inibidor resistente à corrosão apropriado para a água da área. Consulte o especialista de tratamento de água local quanto às características da água do sistema e sobre o inibidor recomendado para o circuito de líquido dos trocadores.

Água não tratada ou tratada incorretamente pode resultar em corrosão, crostas, erosão ou algas. Os serviços de um especialista qualificado em tratamento de água devem ser contratados para desenvolver e monitorar um programa de tratamento.

A água deve estar dentro dos limites de vazão do projeto, limpa e tratada para garantir um desempenho correto do chiller e reduzir o potencial de danos ao tubo devido à corrosão, crostas, erosão ou algas. A Carrier não assume qualquer responsabilidade por danos ao chiller resultantes da água não tratada ou tratada de forma incorreta.

OBSERVAÇÃO: Não utilize anticongelante de automóvel ou qualquer outro tipo de líquido que não seja aprovado para o trocador de calor. Utilize somente glicóis devidamente inibidos, concentrados para fornecer uma proteção adequada para a temperatura considerada.

PRESSURIZAÇÃO DO SISTEMA

Uma pressão inicial adequada deve ser estabelecida antes do preenchimento da unidade. A pressão de inicial deve ser aplicada no ponto de carregamento para preencher um sistema até o seu ponto mais alto, mais uma pressão mínima no topo do sistema (mínimo de 27,6 kPa [4 psig]) para operar ventis de ar e de forma positiva pressurizar o sistema. O tanque de expansão é muito importante para a pressurização do sistema. O tanque de expansão serve para muitas finalidades:

- 1. Prover NPSHR (Net Positive Suction Head Required) para a bomba para operar de forma satisfatória.
- 2. Definir a pressão do sistema.
- 3. Acomodar a expansão/contração da água devido a alterações de temperatura.
- 4. Atuar como uma referência de pressão para a bomba.

O tanque de expansão deve ser definido ANTES que o sistema seja preenchido. Siga a recomendação do fabricante nas instruções sobre como configurar a pressão no tanque de expansão.

Uma vez que o sistema é pressurizado, a pressão no ponto de conexão do tanque de expansão para a tubulação de água não irá alterar a menos que o volume do laço de água se altere (devido à adição/subtração de água ou expansão/contração da temperatura). A pressão neste ponto permanece a mesma apesar disso, ou ainda quando a bomba não está funcionando.

Visto que o tanque de expansão atua como um ponto de referência para a bomba, não pode haver dois pontos de referência (dois tanques expansão) em um sistema, ao menos interligados em comum.

Onde dois ou mais chillers 30XS com kit hidrônico são instalados em paralelo, não deve haver mais do que um tanque de expansão no sistema, a menos que interligados em comum como visto na Figura 13. É permitido instalar o(s) tanque(s) de expansão em uma parte da linha da água de retorno que é comum para todas as bombas, de modo que o tanque seja dimensionado de forma adequada para o volume do sistema combinado.

Se a aplicação envolve dois ou mais chillers em um sistema secundário-primário, um lugar comum para montar o tanque de expansão é na linha de retorno da água gelada, somente antes do desacoplador. Veja a Figura 13 para colocação do tanque de expansão em sistemas secundário primário.

Se um tanque de expansão de diafragma é utilizado (um diafragma flexível separa a interface água/ar) não é recomendado ter qualquer ar no circuito fechado (loop) de água. Veja a seção sobre separação de ar para instruções sobre fornecimento do equipamento de separação de ar.

PREENCHENDO O SISTEMA

O preenchimento inicial do sistema de água gelada deve atingir três objetivos:

- O sistema de tubulação completo deve ser preenchido com água.
- A pressão no topo do sistema deve ser alta o suficiente para o ar de ventil do sistema (normalmente 27.6 kPa [4 psig] é adequado para mais ventis).
- A pressão em todos os pontos no sistema deve ser alta o suficiente para prevenir borbulhamento (flashing) na tubulação ou cavitação na bomba.

A pressão criada por uma bomba em operação afeta a pressão do sistema em todos os pontos exceto um - a conexão do tanque de expansão para o sistema. Isto é apenas o local no sistema onde a operação da bomba não dará indicações de pressão incorreta durante o preenchimento. Portanto, o melhor local para instalar a conexão de preenchimento é perto do tanque de expansão. Um ventil de ar deve ser instalado próximo para ajudar a eliminar o ar que entra durante o procedimento de preenchimento.

Ao preencher o sistema, assegure o seguinte:

- 1. Remova a tubulação de bypass temporária e o equipamento de limpeza/lavagem.
- 2. Verifique se todos os plugues de dreno estão instalados.

Geralmente, um sistema fechado precisa ser preenchido uma única vez. O processo de preenchimento real é um procedimento razoavelmente simples. Todo o ar deve ser purgado ou ventilado a partir do sistema. Ventilação completa em todos os pontos e a circulação na temperatura da sala por várias horas é altamente recomendada.

NOTA

Os códigos locais em relação aos dispositivos com corrente contrária e outras proteções do sistema de água devem ser consultados e seguidos para evitar a contaminação do fornecimento de água pública. Isto é crítico quando o anticongelamento é utilizado no sistema.

DEFINA A VAZÃO DE ÁGUA

Uma vez que o sistema é limpo, pressurizado e preenchido, a vazão através do chiller precisa ser estabelecida. Nas unidades com o pacote hidrônico, isso pode ser acompanhado utilizando a válvula de balanceamento. Siga as recomendações do fabricante para configurar a válvula de balanceamento. Os códigos locais podem restringir a quantidade de água utilizando a válvula de balanceamento para um determinado cavalopotência do motor. Neste caso, utilize o método listado na seção Modificação/Diminuição da Bomba.

OBSERVAÇÃO: A Carrier recomenda um manômetro diferencial de pressão quando medir pressões entre as bombas ou válvulas de balanceamento. Isto fornece grande precisão e reduz o erro construído que ocorre com frequência ao subtrair as pressões feitas por manômetros diferentes.

Um cálculo aproximado de vazão de água também pode ser obtido a partir dos medidores de pressão do trocador de calor 30XS.

O Manual de Serviço inclui gráficos que mostram o relacionamento entre vazão e queda da pressão do trocador de calor. Deve ser observado que estas curvas são para água tratada e trocadores de calor "limpos"; não se aplicam aos trocadores de calor com sujeira. Para ler o gráfico, subtraia as leituras dos manômetros. Certifique-se de utilizar o gráfico correto para a opção de evaporador. Este número é a queda de pressão que passa pelo trocador de calor. Ajuste a válvula de balanceamento externa até que a queda de pressão correta seja obtida para a vazão requerida.

O Cliente/instalador deve assegurar que a bomba irá partir quando solicitada pelo controle do chiller. Além do controle de relé/contatora das bombas, deve ser providenciado interligação de contato de confirmação de operação da bomba e chave de fluxo de água (quando unidade não tiver), sem o qual o equipamento não será habilitado para partir.

⚠ IMPORTANTE

Para a manutenção da garantia do equipamento, todas as bombas de água gelada e de condensação (unidades condensação a água)da unidade devem ser acionadas pelo controle do chiller, evitando danos severos ao evaporador.

Consultar o Catálogo de Produto ou programa de seleção para certificar-se das condições de operação recomendadas.

Consulte o diagrama elétrico especifico para maiores informações sobre interligações de campo de sua unidade.

PROTEÇÃO CONTRA CONGELAMENTO

As unidades 30XS são equipadas com uma chave de fluxo para proteção contra situações de congelamento que ocorrem sem fluxo de água. Enquanto a chave de fluxo é de grande auxílio na prevenção de congelamento durante situações sem fluxo, ela não protege o chiller no caso de falha de energia durante temperaturas ambientes subcongelantes, ou em outros casos onde a temperatura da água cai abaixo da marca de congelamento. Concentrações apropriadas de propileno ou etileno glicol inibido ou outra solução inibida anticongelante adequada devem ser consideradas para a proteção do chiller onde se espera que temperaturas ambientes caiam abaixo de 0°C (32°F). Consulte o especialista de tratamento de água local quanto às características da água do sistema e adicionar um inibidor recomendado para a água gelada. A garantia da Carrier não cobre danos devido a congelamento.

Se a bomba estará sujeita a temperaturas de congelamento, algumas etapas devem ser realizadas para evitar danos por congelamento. Se a bomba não será utilizada durante este tempo, é recomendado drenar a bomba e o pacote hidrônico e esses componentes são lavados com glicol inibido. De outra forma, uma solução de glicol e água deve ser considerada como um líquido de transferência de calor. As unidades tem um plugue de drenagem montado na parte inferior da tampa fundida do evaporador em cada extremidade do evaporador, ou na parte inferior do casco.

OBSERVAÇÃO: Não utilize anticongelante de automóvel ou qualquer outro tipo de líquido que não seja aprovado para o trocador de calor. Utilize somente glicóis devidamente inibidos, concentrados para fornecer uma proteção adequada para a temperatura considerada.

Utilize um aquecedor elétrico tipo fita para a tubulação externa, caso a unidade for exposta a temperaturas de congelamento.

Garante que energia esteja disponível para o chiller em todos os momentos, até mesmo durante a baixa estação, para que a bomba e os aquecedores do evaporador tenham energia. Certifique-se também que as fitas de aquecimento de tubulação tenham energia. A garantia da Carrier não cobre danos devido a congelamento.

PREPARAÇÃO PARA DESLIGAMENTO DE INVERNO Se a unidade não permanecer operacional durante os meses de inverno, ao fim da estação fria complete as seguintes etapas.

- A drenagem do líquido do sistema é altamente recomendada. Se o evaporador não será drenado, não desligue o disjuntor de energia durante o desligamento de baixa estação.
- 2. Isole o evaporador do resto do sistema com válvulas de bloqueio de água.
- Substitua o bujão do dreno e preencha completamente o evaporador com uma mistura de água e solução anticongelamento e anticorrosão inibida adequada, como propilenoglicol.
 - A concentração deve ser adequada para fornecer proteção contra congelamento para 8,3°C (15°F) abaixo do esperado em condições de baixa temperatura ambiente. Anticongelante pode ser adicionado através do ventil no topo da tampa fundida do evaporador para unidades inundadas.
- 4. Deixe o evaporador preenchido com solução anticongelante durante o inverno, ou drene se desejar. Utilize um método aprovado de descarte ao remover a solução anticongelante.

No início da próxima temporada de refrigeração, certifiquese que existe pressão refrigerante em cada circuito antes de preencher novamente o evaporador, adicione um inibidor recomendado e restaure a energia.

Etapa 5 – Conexões Elétricas

AVISO

Choque elétrico pode causar ferimentos corporais e morte. Desligue completamente a energia deste equipamento durante a instalação. Pode haver mais de um interruptor de desconexão. Coloque etiquetas em todos os locais de desconexão para alertar outros para não restaurarem a energia até que o trabalho esteja concluído.

ALIMENTAÇÃO ELÉTRICA

As características elétricas de alimentação disponível devem estar de acordo com a indicada na placa de identificação da unidade. A tensão fornecida deve estar dentro dos limites mostrados. Algumas unidades possuem opções para conexões de força múltiplas. Veja nas Tabelas 4 - Dados Elétricos Gerais e nos diagramas elétricos as exigências e informações sobre as conexões elétricas.

A instalação elétrica da unidade deve estar rigorosamente de acordo com a Norma Brasileira ABNT NBR 5410 - Instalações Elétricas de Baixas Tensões.

⚠ IMPORTANTE

A Carrier NÃO recomenda a operação do equipamento em tensão de alimentação imprópria ou com um desbalanceamento de fase excessivo; a utilização fora dos parâmetros especificados poderá acarretar em perda das condições de garantia deste equipamento.

NOTA

Todas as máquinas terão 2 entradas de força (uma para cada circuito.

ALIMENTAÇÃO DO CONTROLE

A alimentação do controle é obtida da alimentação elétrica da rede e NÃO exige uma fonte separada. Um disjuntor permite que o circuito de controle seja desconectado manualmente quando necessário.

As unidades 30XS possuem uma chave que pode comutar a alimentação de controle através do circuito A ou B.

A unidade possui contatos na placa principal para a instalação em campo do intertravamento da bomba de água gelada (fluido) (CWPI). O sensor de vazão (CWFS) de água gelada é instalado em fábrica. Os contatos devem ser classificados para aplicações capazes de suportar uma carga de 24Vac a 50mA.

Uma chave remota on-off pode ser ligada aos contatos disponíveis na placa principal.

A unidade possui contatos na placa principal para acionamento da bomba de água gelada (PMP1 e PMP2), bem como para o retorno das mesmas.

Para maiores detalhes veja os Diagramas Elétricos correspondentes a unidade utilizada.

↑ CUIDADO

Não utilize os intertravamentos ou outros contatos do dispositivo de segurança entre os terminais de acionamento remoto (ON-OFF).

A conexão dos dispositivos de segurança ou de outros intertravamentos entre estes 2 terminais resultará em um bypass elétrico se a chave de contato da ATIVAÇÃO REMOTA DE OFF estiver na posição HABILITADA. Se o controle remoto on-off da unidade for necessário, um relé fornecido em campo deve ser instalado e devidamente e conectado na caixa de controle da unidade. Não conectar o on-off remoto conforme recomendado pode resultar em danos por congelamento do tubo.

FIAÇÃO DO BARRAMENTO DA COMUNICAÇÃO CARRIER COMFORT NETWORK®

A fiação do barramento de comunicação é um cabo blindado de 3 condutores, com fio dreno, fornecido e instalado em campo.

Os elementos do sistema são conectados ao barramento de comunicação em uma disposição paralela. O pino positivo de cada conector de comunicação do elemento do sistema deve ser conectado aos pinos positives dos elementos do sistema em cada um dos seus lados. Isto também é necessário para os pinos negativos do terra do sinal de cada elemento do sistema. As conexões da fiação para a CCN (Carrier Comfort Network) devem ser feitas no TB (bloco de terminais) 3. Consulte o Manual do Contratante do CCN para mais informações.

NOTA

Os condutores e o fio dreno devem ser, no mínimo, de cobre estanhado, 20 AWG (medida americana de fios). Os condutores individuais devem ser isolados com PVC, PVC / nylon, vinil, Teflon ou polietileno. São exigidos um protetor da folha de 100% de alumínio/ poliéster e um revestimento externo de PVC, PVC/ nylon, vinil de cromo, ou de Teflon com uma faixa mínima de temperatura operacional de -20°C (-4°F) a 60°C (140°F). Veja a Tabela 5 que possui uma lista de fabricantes que produzem a fiação do barramento CCN que atendam a estas exigências.

Tabela 5 - Fiação do Barramento de Comunicação CCN.

FARRICANTE	NÚMERO	DA PEÇA
FABRICANTE	Fiação Normal	Fiação Plenum
Alpha	1895	_
American	A21451	A48301
Belden	8205	884421
Columbia	D6451	_
Manhatten	M13402	M64430
Quabik	6130	_

		FAIXADE	EAIXA DE TENSÃO		COMPRE	SSORES		MOT	MOTORES VENTILADORES	NTILADOF	RES		CORRENTES DA UNIDADE	DA UNIDAD	
UNIDADE	TENSÃO NOMINAL	DE OPER	DE OPERAÇÃO [V]	CIRCU	CIRCUITO A	CIRCI	CIRCUITO B	CIRCUITO A	ITO A	CIRCUITO B	по в	CIRCL	CIRCUITO A	CIRCL	CIRCUITO B
3043	3F - [V - Hz]	Min.	Máx.	R[A]	LRA [A]	RLA [A]	LRA [A]	QTDE	F.F.	QTDE	F.F.	Imáx. [A]	PARTIDA [A]	Imáx. [A]	PARTIDA [A]
	220 - 60	198	242	147,1	397,2	147,1	397,2	2	12,0	2	12,0	207,9	389,0	207,9	389,0
100	380 - 60	342	418	81,6	230,0	81,6	230,0	2	9,7	2	9,2	117,2	225,0	117,2	225,0
	440 - 60	396	484	73,6	198,6	73,6	198,6	2	6,1	2	6,1	104,2	194,0	104,2	194,0
	220 - 60	198	242	181,5	397,2	147,1	397,2	2	12,0	2	12,0	250,9	389,0	207,9	389,0
110	380 - 60	342	418	100,5	230,0	81,6	230,0	2	2,6	2	9,7	140,8	225,0	117,2	225,0
	440 - 60	396	484	6'06	198,6	73,6	198,6	2	6,1	2	6,1	125,1	194,0	104,2	194,0
	220 - 60	198	242	181,5	397,2	181,5	397,2	2	12,0	2	12,0	250,9	389,0	250,9	389,0
120	380 - 60	342	418	100,5	230,0	100,5	230,0	2	7,6	2	9,7	140,8	225,0	140,8	225,0
	440 - 60	396	484	6'06	198,6	6'06	198,6	2	6,1	2	6,1	125,1	194,0	125,1	194,0 ape
	220 - 60	198	242	279,3	627,2	147,1	397,2	3	12,0	2	12,0	385,1	0,099	207,9	389,0
140	380 - 60	342	418	154,6	363,0	81,6	230,0	3	2,6	2	2,6	216,1	382,0	117,2	225,5
	440 - 60	396	484	139,6	313,6	73,6	198,6	3	6,1	2	6,1	192,8	330,0	104,2	194,0
	220 - 60	198	242	324,1	627,2	181,5	397,2	4	12,0	2	12,0	453,1	836,0	250,9	389,0
160	380 - 60	342	418	179,4	363,0	100,5	230,0	4	2,6	2	2,6	254,7	483,8	140,8	225,5
	440 - 60	396	484	161,6	313,6	6'06	198,6	4	6,1	2	6,1	226,4	418,0	125,1	194,0
	220 - 60	198	242	279,3	627,2	279,3	627,2	3	12,0	3	12,0	385,1	0,099	385,1	0,099
180	380 - 60	342	418	154,6	363,0	154,6	363,0	3	2,6	3	2,6	216,1	382,0	216,1	382,0
	440 - 60	396	484	139,6	313,6	139,6	313,6	3	6,1	3	6,1	192,8	330,0	192,8	330,0
	220 - 60	198	242	324,1	784,1	324,1	784,1	4	12,0	4	12,0	453,1	836,0	453,1	836,0 %
200	380 - 60	342	418	179,4	454,0	179,4	454,0	4	2,6	4	2,6	254,7	483,8	254,7	483,8
	440 - 60	396	484	161,6	392,0	161,6	392,0	4	6,1	4	6,1	226,4	418,0	226,4	418,0
	220 - 60	198	242	386,6	784,1	324,1	784,1	4	12,0	4	12,0	531,3	842,0	453,1	836,0
220	380 - 60	342	418	214,3	454,0	179,4	454,0	4	2,6	4	2,6	298,3	487,0	254,7	483,8
	440 - 60	396	484	193,3	392,0	161,6	392,0	4	6,1	4	6,1	266,0	421,0	226,4	418,0
	220 - 60	198	242	386,6	784,1	386,6	784,1	4	12,0	4	12,0	531,3	842,0	531,3	842,0
240	380 - 60	342	418	214,3	454,0	214,3	454,0	4	9,7	4	9,7	298,3	487,0	298,3	487,0
	440 - 60	396	484	193,3	392,0	193,3	392,0	4	6,1	4	6,1	266,0	421,0	266,0	421,0

LEGENDA:

Imáx - Corrente Máxima

Ipartida - Corrente de Partida RLA - Corrente Nominal

LRA - Corrente de Rotor Bloqueado

A tensão nominal da rede deve ser a indicada na plaqueta da unidade. A variação da tensão deve ser no máximo +/-10%. Nesta faixa, desta faixa. Consulte os Códigos e/ou Normas aplicáveis a instalação da unidade no local, de maneira a assegurar que a instalação eventualmente a unidade poderá atuar os dispositivos de proteção. Não são permitidos em nenhum intervalo de tempo valores fora elétrica esteja de acordo com os padrões e requisitos especificados. Norma NBR5410 "Instalações Elétricas de Baixa Tensão".

CARACTERÍSTICAS ELÉTRICAS 30XS

Ao conectar a um barramento de comunicação CCN é importante que o esquema de codificação de cores seja utilizado em toda a rede para simplificar a instalação. Recomenda-se que o vermelho seja utilizado para o sinal positivo, o preto para o sinal negativo e o branco para o terra do sinal. Utilize um esquema semelhante para cabos contendo fios de cores diferentes. Em cada elemento do sistema, as proteções dos cabos do barramento de comunicação devem ser presos juntos. Se o barramento de comunicação estiver inteiramente dentro de um prédio, o protetor contínuo resultante deve ser conectado ao terra somente em um ponto. Se o cabo do barramento de comunicação sair de um prédio e entrar em outro, os protetores devem ser conectados ao terra no pararraios de cada prédio, onde o cabo entra ou sai do prédio (somente um ponto por prédio).

Para conectar a unidade à rede:

- 1. Desligue a energia da caixa de controle.
- Corte o fio do CCN e descasque as extremidades dos condutores vermelhos (+), brancos (terra), e pretos (-). Substitua por cores apropriadas para cabos de diferentes cores.
- 3. Conecte o fio vermelho (+) ao terminal no TB3 do plugue, o fio branco ao terminal de COM, e o fio preto ao terminal (–).
- O conector RJ14 do CCN no TB3 também pode ser utilizado, mas destina-se somente a uma conexão temporária (por exemplo, uma ferramenta de serviço operando em um computador laptop).

⚠ IMPORTANTE

Um cabo do barramento CCN em curto impedirá a operação de algumas rotinas e pode impedir a partida da unidade. Se ocorrerem condições anormais, desconecte a máquina do CCN. Se as condições retornarem ao normal, verifique o conector e o cabo do CCN. Passe novos cabos se necessário. Um curto em uma seção do barramento pode causar problemas com todos os elementos do sistema no barramento.

FIAÇÃO DE COMUNICAÇÃO NÃO CCN

As unidades 30XS oferecem diversos tradutores não CCN. Consulte as instruções de instalação separadas para etapas adicionais da fiação.

FIAÇÃO OPCIONAL DO CONTROLE EM CAMPO

Instale as opções de fiação de controle em campo. Alguns opcionais, tais como um limite de demanda de 4 a 20 mA exige o módulo de gerenciamento de energia, e pode exigir que sejam instalados primeiramente (caso não instalados em fábrica) para as conexões dos terminais.

Etapa 6 — Instalar Acessórios

Uma série de acessórios está disponível para fornecer características opcionais ao equipamento, consulte o Manual de Serviço para maiores detalhes.

MÓDULO DE GERENCIAMENTO DE ENERGIA

O módulo de gerenciamento de energia é utilizado para qualquer um dos seguintes tipos: operação, reajuste da temperatura, limite da demanda e fabricação de gelo:

- Entradas de 4 a 20 mA para reajuste do set point de resfriamento e limite da demanda (exige um gerador de 4 a 20 mA fornecido em campo)
- Saída de 0 a 10 V para operação em percentual total de capacidade
- Saídas discretas de 24 V para relés de desligamento e operação
- Entrada de temperatura do espaço refrigerado de 10k
- Entradas discretas para limite da ocupação, limite da demanda chave 2 (switch) (etapa 1 – o limite da demanda é conectado à placa base, exige contatos secos fornecidos em campo) switch de bloqueio remoto e switch de fabricação de gelo (exige contatos secos fornecidos em campo).

ACESSÓRIO DA CARGA MÍNIMA

Entre em contato com seu representante local da Carrier para mais detalhes caso seja necessário um acessório de carga mínima para uma aplicação específica. Para detalhes da instalação, veja as instruções a seguir.

ACESSÓRIOS DE COMUNICAÇÃO

Uma série de opções de comunicação estão disponíveis para cumprir com qualquer exigência.

Entre em contato com seu representante Carrier local para mais detalhes. Para detalhes da instalação, consulte as instruções de instalação separadas fornecidas com o pacote de acessórios.

ACESSÓRIOS DE CONTROLE

Diversos acessórios opcionais do controle estão disponíveis para fornecer as seguintes características:

- Tradutor BACnet™
- Sistema da Carrier Comfort Network (CCN)
- Módulo de gerenciamento da energia (MGE)

Consulte o Manual de Serviço e instruções separadas para instalação de acessórios.

ACESSÓRIOS VARIADOS

Para aplicações que exigem acessórios especiais, os seguintes pacotes estão disponíveis: manta para ruídos, isolamento contra vibrações externas e sensor de reajuste da temperatura. Consulte o departamento de engenharia de aplicação da Carrier para maiores detalhes sobre estas opções.

Etapa 7 — Unidade de Teste de Vazamento

As unidades 30XS são embarcadas com uma carga completa de operação de R-134a (veja as Tabelas 2a e 2b) e deve estar sob pressão suficiente para realizar um teste de vazamento.

⚠ IMPORTANTE

Estas unidades foram projetadas para serem utilizadas somente com R-134a.

NÃO USE NENHUM OUTRO fluido refrigerante nessas unidades.

Realize um teste de vazamento para certificar-se de que nenhum vazamento tenha se desenvolvido durante o embarque da unidade. A desidratação do sistema não será necessária, a não ser que toda a carga de refrigerante tenha sido perdida. Existem diversos encaixes de vedação com anéis O-Ring utilizados na tubulação da linha de óleo. Se vazamento ainda for detectado em qualquer um desses encaixes, abra o sistema e inspecione a superfície do anel O-Ring quanto a materiais estranhos ou danos. Não reutilize anéis de vedação. Repare qualquer vazamento encontrado seguindo as boas práticas de refrigeração.

NÃO APERTE DE FORMA EXCESSIVA ESSES ENCAIXES. Apertar de forma excessiva irá resultar em dano ao anel O-Ring.

Etapa 8 – Carregamento do Refrigerante

DESIDRATAÇÃO - Consulte práticas padrões da indústria para a execução da operação e para maiores detalhes. Não utilize um compressor para evacuar o sistema.

CARGA DE REFRIGERANTE

↑ CUIDADO

Estas unidades foram projetadas para uso somente com R-134a. NÃO USE NENHUM OUTRO refrigerante nessas unidades.

O método de carregamento com refrigerante no estado líquido é recomendado para uma carga completa ou quando for necessária uma carga adicional.

⚠ CUIDADO

Ao carregar, circule água através do evaporador em todos os momentos para evitar congelamento. Danos causados por congelamento são considerados como uma negligência e podem invalidar a garantia da Carrier.

⚠ CUIDADO

NÃO SOBRECARREGUE o sistema. A sobrecarga resulta em uma pressão de descarga mais elevada, com maior consumo de líquido de refrigeração, possíveis danos ao compressor e em um consumo mais elevado de energia.

As unidades 30XS são embarcadas da fábrica com uma carga completa de R-134a. A unidade não deve ser carregada na instalação, a menos que um vazamento tenha sido detectado na seção Etapa 7 - Unidade de teste de vazamento. Se desidratação e carregamento forem necessários, utilize as práticas padrões da indústria para a execução das operações.

Etapa 9 — Tradutor BACnet/Modbus Carrier

O módulo tradutor CCN Carrier com serial de comunicação RS-485 (33CNTRAN485), mostrado abaixo, é um microcontrolador que proporciona a facilidade de interface com o protocolo CCN da Carrier e a comunicação com sistemas terceiros de automação. O tradutor Carrier para BACnet/Modbus possibilita comunicação de protocolo CCN para terminal remoto Modbus (RTU) além de conversão do protocolo BACnet Mestre-Escravo/Twisted-Pair (MS/TP).

Procedimento de instalação:

- Instale a placa de circuitos do tradutor Carrier no parte de controle CCN do equipamento e assegure a sua fixação através de 4 parafusos para placas de metal, que devem ser inseridos nos espaçadores integrados a placa.
- Conecte a alimentação de 24 Vac (Transformador não incluso, mínimo 3 VA) ao plugue de entrada de força da placa.

Conector de força Terminal distribuição

Carrier Tradutor Conector	Sinal
+	Positivo
/-//	Terrra

Figura 17a - Identificação do Terminal Conector de Força

Conector CCN Terminal distribuição

Carrier Tradutor Conector	Conector Equipamento	Sinal
+	1	Dados CCN (+)
G	2	Sinal TerraCCN
-	3	Dados CCD (-)

Figura 17b - Identificação do Terminal Conector CCN

- 3. Se a rede CCN consiste unicamente de um Tradutor Carrier e o seu respectivo controle associado, faça o cabeamento do Tradutor através do conector CCN não removível para o conector de comunicação do controle CCN. Se a rede CCN consiste de múltiplos tradutores e múltiplos controles associados, faça o barramento de comunicação de acordo com os padrões da rede CCN, e o endereçamento dos Tradutores Carrier apropriadamente.
- Faça o cabeamento do conector removível de comunicação RS-485 para a rede de comunicação Modbus ou BACnet MS/TP conforme orientação do fabricante e/ou instalador destes protocolos.

NOTAS

- A alimentação pode ser dividida com apenas um sistema CCN e transformador 24 Vac garantindo assim que se tenha potência suficiente disponível para o tranformador existente. O tradutor Carrier dispõe de uma porta de comunicação isolada, que permite o compartilhamento de alimentação com outro controlador Carrier CCN que utilize tensão 24 Vac. Quando compartilhada a alimentação, tenha certeza de a polaridade dos cabos de entrada do Tradutor Carrier (24 Vac + Terra) são os mesmos do controle principal ou fonte.
- É recomendado que uma ligação On/Off seja providenciada para o tradutor Carrier, evitando com que os cabos sejam desconetados para tal função.

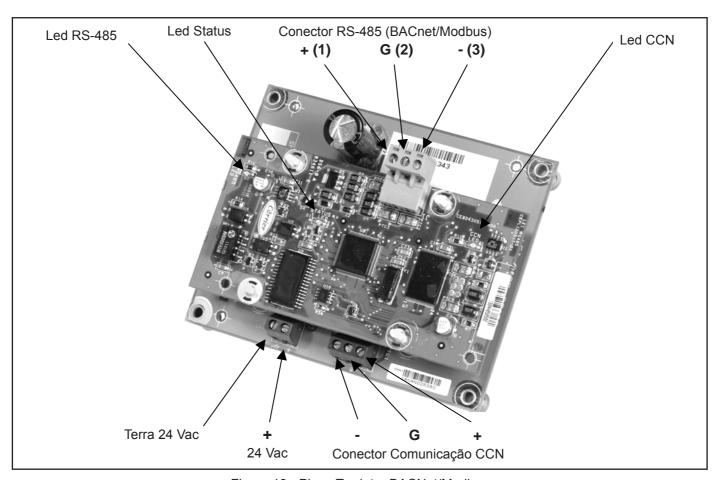


Figura 18 - Placa Tradutor BACNet/Modbus

LEDs

O tradutor Carrier BACnet/Modbus possui três LEDs que são utilizados para indicar o status operacional:

LED	Cor	Indicação	
Status	Vermelho	Status de operação, inicialização e configuração. O LED piscará a uma taxa de 2 Hz quando estiver inicializando e a 1 Hz quando estiver operando corretamente.	
CCN	Amarelo	O tradutor Carrier está enviando mensagens de comunicação CCN ao respectivo controlador conectado. Se o controlador CCN estiver respondendo, o LED CCN piscará quando uma mensagem for enviado ao Tradutor.	
RS-485	Verde	O tradutor Carrier está enviando mensagens de comunicação RS-485 para a rede Modbus ou BACnet MS/TP.	

4. Pré-Start-up (Pré-Partida)

5. Start-up (Partida)

⚠ IMPORTANTE

Preencha a Lista de verificação (check list) de Startup para os Chillers de Líquido 30XS no final desta publicação.

A lista de verificação assegura o start-up adequado de uma unidade e fornece um registro da condição da unidade, requisitos de aplicação, informações do sistema, e operação na partida inicial.

Verificação do Sistema

- Verifique se os componentes auxiliares, como a bomba de circulação de água gelada, equipamento para manejo de ar (fan-coil), ou outro equipamento para o qual o chiller fornece líquido estão operando. Consulte as instruções do fabricante. Se a unidade tiver acessórios instalados no campo, verifique se todos estão adequadamente instalados e conectados corretamente. Consulte os esquemas elétricos da unidade.
- 2. Abra as válvulas de serviço de sucção do compressor (se instaladas).
- Abra as válvulas de serviço da linha de descarga, linha de líquido, linha de óleo, e economizador (se instalado).
- 4. Prencha o circuito de fluido do chiller com água limpa (com o inibidor recomendado adicionado) ou outro fluido não-corrosivo a ser resfriado. Efetue a purga de todo o ar para fora dos pontos altos do sistema. Se as temperaturas externas previstas estiverem abaixo de 0°C (32°F), glicol propileno inibido suficiente ou outra uma solução anticongelamento adequada deve ser adicionado(a) ao circuito de água do chiller para evitar eventual congelamento. O circuito de água gelada deverá ser limpo antes que a unidade seja conectada.
- 5. Verifique o aperto de todas as conexões elétricas.
- 6. A Fonte de alimentação deverá estar de acordo com a placa de identificação da unidade.
- Os aquecedores do separador de óleo devem estar firmemente assentados sob o separador de óleo, e devem ser ligados 24 horas antes da partida da unidade.
- 8. Verifique a sequência das fases da fonte de alimentação. Os motores dos ventiladores são trifásicos. Verifique a rotação dos ventiladores não controlados por temperatura baixa ambiente usando o teste rápido. A rotação do ventilador é no sentido anti-horário quando vista do topo da unidade. Se o ventilador não estiver efetuando rotação no sentido anti-horário, inverta 2 dos fios de alimentação no bloco principal de terminais.
- 9. Execute o teste de serviço para verificar a operação adequada.

Não opere os contatores manualmente. Isso pode resultar em sérios danos à máquina.

Start-up Efetivo

A partida efetiva deverá ser feita somente sob supervisão de um técnico de resfriamento qualificado.

- Certifique-se de que todas as válvulas de óleo, de sucção, válvulas de descarga (se instaladas) e válvulas de serviço da linha de líquido estão abertas.
- Com o uso do controle da unidade, defina o ponto de ajuste da temperatura de saída de água (Cooling Setpoint 1, CSP.1). Nenhum ajuste da faixa de resfriamento é necessário.
- Se as funções opcionais de controle ou acessórios estiverem sendo usados, a unidade deverá ser configurado adequadamente. Consulte a seção Opções de Configuração do Controlador para obter mais detalhes.
- Ligue a bomba de água gelada, se a unidade não for configurada para o controle da bomba. (Cooler Pumps Sequence, PUMP=0)
- 5. Preencha a lista de verificação de Partida para verificar se todos os componentes estão funcionando corretamente.
- Se a unidade for equipada com Touch Pilot ou New Generation, pressione o botão start/stop e selecione Local On.
- 7. Deixe a unidade operar e confirme se tudo está funcionando corretamente. Verifique se a temperatura de saída de água é igual ao Ponto de Controle do set point de saída (Control Point, CTPT).

MPORTANTE

Este equipamento gera, utiliza e pode irradiar energia por radiofrequência, caso não seja instalado e utilizado de acordo com estas instruções, poderá causar interferência de rádio.

Consulte os Códigos e/ou Normas aplicáveis a instalação da unidade no local, de maneira a assegurar que a instalação elétrica esteja de acordo com os padrões e requisitos especificados pela Norma NBR5410 - "Instalações Elétricas de Baixa Tensão".

Limitações Operacionais

Temperaturas

Os limites de temperatura operacional da unidade estão listados na tabela abaixo.

Tabela 7 - Limites de Temperatura

TEMPERATURA	°C	°F
Temperatura Ambiente Máxima	47	116
Temperatura Ambiente Mínima	0	32
Máxima EWT (Evaporador) *	35	95
Máxima LWT (Evaporador)	15	60
Mínima LWT (Evaporador) †	4,4	40

Legenda:

EWT - Temperatura de entrada de água

LWT - Temperatura de saída de água

Notas:

- * Para operação contínua, EWT não deve exceder 21,1°C (70°F).
- † A unidade exige modificação de brine (salmoura) para operação abaixo desta temperatura.

Operação em Baixa Temperatura Ambiente

Se houver previsão de operação da unidade em temperaturas abaixo de 0°C (32°F), consulte as instruções de instalação específicas para operação em baixa temperatura ambiente utilizando o acessório de controle da pressão em baixa temperatura ambiente, se não estiver instalado. Entre em contato com seu representante Carrier local para mais detalhes.

Se houver previsão de velocidades de vento acima de 8 km/h, defletores de vento deverão ser construídos e instalados no campo para todas as unidades usando o controle de pressão em baixa temperatura ambiente.

Veja as Instruções de Instalação do 30XS ou as instruções de instalação de acessório de controle da pressão de alta em ambiente de baixa temperatura para mais informações.

∴ CUIDADO

A aplicação de serviço com brine (salmoura) (abaixo de 4.4°C [40°F] LCWT) para o chiller normalmente requer modificação de fábrica. Contacte o seu representante Carrier para obter detalhes sobre de saída de água do evaporador abaixo de 4,4°C (40°F) sem essa modificação pode resultar em falha do compressor.

Tensão

Fonte de Alimentação Principal

As tensões de alimentação mínimas e máximas aceitáveis estão indicadas em Dados Elétricos Gerais. (Tab. 4).

Tensão de Alimentação Trifásica Não Balanceada

Nunca opere um motor onde houver desbalanceamento entre fases maior que 2%. Para determinar o percentual de desbalanceamento de tensão:

O desvio de tensão máximo é a maior diferença entre uma medição de tensão em duas fases e a média de todas as três fases.

Exemplo: A tensão de alimentação é 220V - 3ph - 60Hz.

1. Determine a tensão média:

Tensão Média =
$$223+216+218 = 657 = 219$$

2. Determine o desvio máximo da tensão média:

- 3. Determine o percentual do desbalanceamento de Tensão:
- % desbalanceamento de tensão = 100 x 4 /219 = 1,8%

Este desbalanceamento de tensão é satisfatório, pois está abaixo do máximo permitido de 2%.

Se o desbalanceamento entre fases da fonte de alimentação for maior que 2%, entre em contato com a empresa concessionária de energia elétrica local imediatamente. Não opere a unidade até que a condição de desbalanceamento seja corrigida.

5. Start-up (Partida) (continuação)

Volume do circuito fechado de água

O volume em circulação será igual ou maior que 3,2 litros/kW (3 galões por tonelada nominal) de resfriamento para a estabilidade e precisão da temperatura em aplicações normais de ar condicionado. Em aplicações de resfriamento de processo ou para operação em temperatura ambiente abaixo de 0°C (32°F) com condições de baixa carga, deve haver de 6,5 a 10,8 l/kW. Para atingir este volume, muitas vezes será necessário instalar um tanque no circuito fechado.

O tanque será provido de defletor para assegurar que não haja nenhuma estratificação e que a água (brine (salmoura)) que entra no tanque seja adequadamente misturada ao líquido que este contiver. (Ver figura 26).

Atubulação entre o chiller e o tanque de volume do circuito de fluido pode ser instalada de forma a permitir que o tanque fique no lado de retorno do chiller (tanque ligado à entrada do chiller) ou o no lado de fornecimento do chiller (tanque ligado à saída do chiller). No entanto, para uma operação mais estável do chiller, recomendamos ligar o tanque ao lado de retorno do chiller para atenuar quaisquer oscilações na linha e manter uma operação estável no chiller.

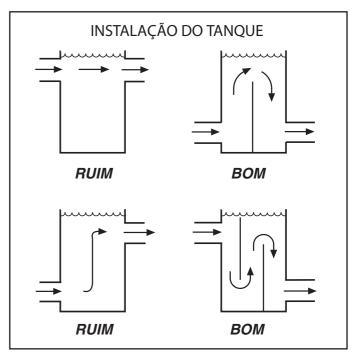
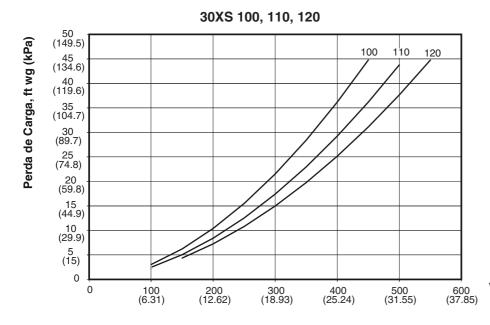


Figura 19 - Defletores do tanque

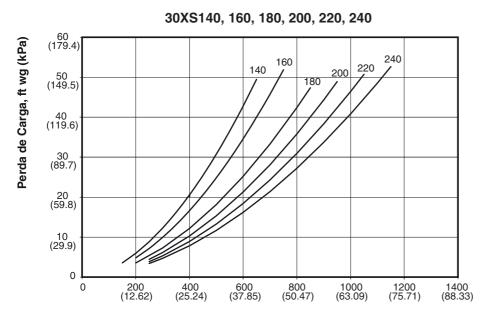
Tabela 8 - Taxas de vazão máximas e mínimas do evaporador 30XS

	ITEM						MÁX	(IMO
	Temperatur	a de saída de á	gua do evaporador*		4.4°C	(40°F)	15.0°C	(60°F)
	Temperatura	de entrada de	água do evaporador**		7.2°C	(45°F)	21.1°C	(70°F)
30XS	Taxa de Vaz	ão Nominal	Evaporador	Nº de	Vazão I	Mínima	Vazão I	Vláxima
3073	(gpm)	(I/s)	Evaporador	passes	(gpm)	(I/s)	(gpm)	(I/s)
100	225.5	14.2	Padrão, Inundado	2	101	6.4	403	25.4
110	244.9	15.5	Padrão, Inundado	2	125	7.9	501	31.6
120	264.8	16.7	Padrão, Inundado	2	125	7.9	501	31.6
140	317.8	20.1	Padrão, Inundado	2	134	8.5	538	33.9
160	365.1	23.0	Padrão, Inundado	2	165	10.4	660	41.6
180	409.6	25.8	Padrão, Inundado	2	202	12.7	807	50.9
200	463.9	29.3	Padrão, Inundado	2	223	14.1	892	56.3
220	505.9	31.9	Padrão, Inundado	2	235	14.8	941	59.4
240	545.8	34.4	Padrão, Inundado	2	266	16.8	1063	67.1

^{*} Para as aplicações que exigem operação de temperatura de saída de água do evaporador com menos de 4,4°C (40°F), as unidades requerem o uso de anticongelamento e a aplicação pode exigir a opção de brine (salmoura). Entre em contato com seu representante Carrier local para maiores informações.


OBSERVAÇÕES:

- 1. As unidades 30XS irão iniciar e manter-se com temperaturas de circuito até 35°C (95°F).
- 2. As vazões nominais exigidas em condições AHRI de temperatura de saída de água é 7°C (44°F), temperatura de entrada de água 12°C (54°F), ambiente 35°C (95°F).
 - Fator de incrustação 0.00010 ft²-h-F/Btu (0.000018 m²-K/kW).
- 3. Para obter o controle da temperatura adequado, o volume do fluido do circuito evaporador deve ser de pelo menos 3,23 l/kW (3 gal/ton) da capacidade nominal do chiller para o ar condicionado e pelo menos 6,5 l/kW (6 gal/ton) para sistemas ou aplicações de processo que devem operar em baixas temperaturas ambiente (abaixo de 0°C [32°F]).


^{**} Para aplicações que exigem operação de temperatura de entrada de água no evaporador com menos de 7,2°C (45°F), entre em contato com seu representante Carrier local para a seleção da unidade utilizando o catálogo eletrônico da Carrier.

5. Start-up (Partida) (continuação)

Vazão do Evaporador, GPM (I/s)

Vazão do Evaporador, GPM (I/s)

Gráficos das Curvas da queda de pressão no evaporador tipo padrão.

6. Operação

Sequência de Operação

Com um comando para dar a partida no chiller, a bomba do evaporador será acionada. Depois de verificar a vazão de água, o controle irá monitorar as temperaturas de entrada e saída de água. Se a necessidade de resfriamento mecânico for determinada, o controle decide qual circuito e compressor podem ser acionados. O controle dará a partida no compressor necessário completamente descarregado e desligará o aquecedor do separador de óleo (se estiver ligado). O controle continuará a carregar esse circuito, movendo a slide valve para satisfazer as necessidades de resfriamento. Depois de totalmente carregado, o controle vai acionar os circuitos adicionais para satisfazer a carga, conforme necessário. O desligamento de cada circuito, em condições normais, ocorre na sequência oposta ao carregamento. Uma vez que o circuito A esteja totalmente descarregado, o compressor é desligado e a EXV irá fechar completamente.

Se a temperatura do ar externo for menor que o ponto de congelamento de brine (salmoura) mais 9,4°C, o circuito executará um ciclo de recolhimento. A EXV será fechada e o compressor continuará a operar até que a temperatura de sucção saturada (SST) esteja 5,6°C abaixo da SST de partida ou 5,6°C abaixo do ponto de congelamento de brine (salmoura).

Sequência de Funcionamento do Chiller Duplo

Com um comando para partida do chiller, o chiller mestre determina qual chiller será o chiller principal, baseado na configuração Lead- Lag Select, LLBL e Lead/Lag Balance Data, LLBD. O chiller principal (lead) sempre é acionado primeiro e o chiller secundário (lag) é mantido em capacidade de 0% pelo chiller mestre, forçando o valor de limite de demanda de secundária (lag) para 0%. Se o Tempo de Desligamento Principal (Lead Pulldown Time - LPUL) tiver sido configurado, o chiller principal continuará a operar sozinho para o tempo especificado. Depois que o LPUL tiver transcorrido e quando o chiller principal estiver completamente carregado, ou toda compressão disponível estiver no valor de limite de demanda mestre, o temporizador de início de lag (Lag Start Timer, LLDY) é iniciado.

Quando os valores do temporizador de desligamento e do temporizador de partida do secundário (lag) tiverem expirado e a temperatura combinada de saída de água gelada for maior que 1,7°C acima do set point, será dada a partida no chiller secundário (lag). Se não tiver sido dada partida na bomba de água do chiller secundário (lag) quando as máquinas tiverem entrado na condição ocupada, a bomba de água do chiller secundário (lag) será acionada. A partida do chiller secundário (lag) será dada com o chiller mestre forçando o valor do limite de demanda do chiller secundário (lag) (LAG_LIM) até o valor do limite de demanda do mestre. Se for selecionado o balanceamento da capacidade leag/lag, uma vez dada partida no chiller secundário (lag), o chiller mestre tentará manter a diferença em capacidade entre os chillers principal (lead) e secundário (lag) inferior a 20%.

Em seguida, o chiller mestre será responsável pelo cálculo da capacidade do circuito de água e determinará qual chiller, principal ou secundário, aumentará ou reduzirá a capacidade. Quando a carga diminuir, o chiller secundário (lag) será o primeiro a descarregar. Para isso, o set point do chiller principal é reduzido em -2.2°C até o chiller descarregar.

Modos Operacionais

Os modos de operação são modos de limite que afetam a operação normal do equipamento. Mais de um modo de operação pode estar em vigor ao mesmo tempo. Alguns modos de operação possuem limites de controle da capacidade correspondentes na seção Limites de controle da capacidade (Capacity Control Overrides).

Para o visor Touch Pilot™, os status dos modos de operação podem ser encontrados no submenu MODES, que está no menu STATUS. Cada modo de operação e seu status (Yes = ativo, No = inativo) é listado.

Startup Delay In Effect (Atraso de Startup Ativado)

Este modo é verificado quando a unidade é acionada. Ele é ativado quando o temporizador de minutos fora de tempo (Unit Off a On Delay, DELY) estiver ativo. A unidade não dará a partida até que o temporizador tenha expirado. O modo terminará quando o temporizador expirar.

Second Set Point In Use (Segundo Ponto de Ajuste em Uso)

Este modo é verificado quando a unidade é acionada. O modo fica ativo quando o set point de Resfriamento 2 (Cooling Setpoint 2, CSP.2) ou set point do Gelo (Cooling Ice Setpoint, CSP.3) estiver em uso. Neste modo, o set point Ativo (Current Setpoint, SETP) irá mostrar o valor CSP.2 ou CSP.3.

Neste modo, a unidade vai operar para o set point de Resfriamento (CSP.2) ou set point de Gelo (CSP.3). O modo irá terminar quando o set point de resfriamento 2 (CSP.2) ou o set point de Gelo (CSP.3) não estiver mais em uso.

Reset In Effect (Reset em Uso)

Este modo é verificado quando a unidade é acionada. O modo será ativado quando o Reset da temperatura (Cooling Reset Select, CRST) estiver habilitado por CRST = 1 (Temperatura de Saída de Ar), CRST = 2 (retorno de água), CRST = 3 (Entrada 4-20 mA) ou CRST = 4 (Temperatura ambiente) e o reset estiver ativos.

Neste modo, o ponto de ajuste ativo (Current Setpoint, SETP) será modificado de acordo com a informação programada e será exibido como Ponto de Controle (Control Point, CTPT). O modo irá terminar quando o Reset da temperatura não estiver modificando o set point de saída de água ativo, fazendo com que o SETP seja igual a CTPT.

6. Operação (continuação)

Tabela 6 - Modos Operacionais 30XS

NÚMERO DO MODO OPERACIONAL DO NAVEGADOR	DESCRIÇÃO TOUCH PILOT	LINHA N TOUCH PILOT	VALOR TOUCH PILOT
01	Startup Delay in Effect	2	Yes/No
02	Second Setpoint in Use	3	Yes/No
03	Reset in Effect	4	Yes/No
04	Demand Limit Active	5	Yes/No
05	Ramp Loading Active	6	Yes/No
06	Cooler Heater Active	7	Yes/No
07	Cooler Pumps Rotation	8	Yes/No
08	Pump Periodic Start	9	Yes/No
09	Night Low Noise Active	10	Yes/No
10	System Manager Active	11	Yes/No
11	Mast Slave Active	12	Yes/No
12	Auto Changeover Active	13	Yes/No
13	Free Cooling Active	14	Yes/No
14	Reclaim Active	15	Yes/No
15	Electric Heat Active	16	Yes/No
16	Heating Low EWT Lockout	17	Yes/No
17	Condenser Pumps Rotation	18	Yes/No
18	Ice Mode in Effect	19	Yes/No
19	Defrost Active on Cir A	20	Yes/No
20	Defrost Active on Cir B	21	Yes/No
21	Low Suction Circuit A	22	Yes/No
22	Low Suction Circuit B	23	Yes/No
23	Low Suction Circuit C	24	Yes/No
24	High DGT Circuit A	25	Yes/No
25	High DGT Circuit B	26	Yes/No
26	High DGT Circuit C	27	Yes/No
27	High Pres Override Cir A	28	Yes/No
28	High Pres Override Cir B	29	Yes/No
29	High Pres Override Cir C	30	Yes/No
30	Low Superheat Circuit A	31	Yes/No
31	Low Superheat Circuit B	32	Yes/No
32	Low Superheat Circuit C	33	Yes/No

Demand Limit Active (Limite de Demanda Ativo)

Este modo é verificado quando a unidade estiver ligada. O modo fica ativo quando o Limite de Demanda (Demand Limit Type Select, DMDC) é ativado tanto por DMDC = 1 (Chave), DMDC = 2 (Entrada 4-20 mA), ou o limite de capacidade para baixo ruído noturno (Capacity Limit, LS.LT).

O Valor do Limite de Demanda ativo (Active Demand Limit Val, LIM) irá exibir o limite de demanda de atual de acordo com as informações programadas e a capacidade da unidade será reduzida para o valor indicado ou inferior. O modo irá terminar quando o comando de Limite de demanda tiver sido removido.

Ramp Loading Active (Rampa de Carga Ativa)

Este modo é verificado quando a unidade estiver ligada. O modo fica ativo quando a Rampa de Carga (Ramp Loading Select, RL.S) estiver habilitada e as condições a seguir forem atendidas:

- A temperatura de saída de água é superior a 2,2°C a partir do Ponto de Controle (Control Point, CTPT), e
- A taxa de variação da temperatura de saída de água é maior que a Rampa de Carga para Resfriamento (Loading Ramp Cooling, CRMP).

O controle vai limitar o aumento percentual da capacidade até que uma das duas condições acima referidas não seja mais satisfeita, então o modo terminará.

Cooler Pump Rotation (Rotação das Bombas do Evaporador)

Este modo é verificado quando a unidade está Ligada ou Desligada. O modo fica ativo quando a Sequência das Bombas do Evaporador (Cooler Pump Run Status, PUMP=2) (2 Pumps Automatic Changeover) e o Temporizador Delta de Rotação da Bomba (Pump Auto Rotation Delay, ROT.P) tiver expirado.

O controle vai mudar o funcionamento das bombas. A bomba principal (lead) irá funcionar normalmente. A bomba secundária (lag) vai ser acionada, tornando-se a principal, e depois a bomba principal será desligada. Este modo irá terminar quando a operação da bomba tiver sido efetuada.

Pump Periodic Start (Partida Periódica da Bomba)

Este modo é ativado quando a bomba do evaporador for ligada devido à configuração da Partida Periódica da Bomba (Pump Sticking Protection, PM.PS=YES). Se a bomba não tiver funcionado naquele dia, uma bomba será ligada e irá operar por 2 segundos às 14h00.

Se a máquina estiver equipada com duas bombas, a bomba Nº 1 irá operar em dias pares (dia 2, 4, 6 do mês). A Bomba Nº 2 irá operar em dias ímpares (dia 1, 3, 5 do mês). O modo será encerrado quando a bomba for desligada.

Night Low Noise Active (Baixo Ruído Noturno Ativo)

Este modo fica ativo quando a Opção de Baixo Ruído no Período Noturno (Night Time Low Noise) tiver sido configurada e a hora atual estiver dentro da janela de tempo configurada. A programação de Night Low Noise Start Time (Start Hour, LS.ST) e de Night Low Noise End Time (Hora, LS.ND) configura a opção.

O controle aumentará o set point da pressão de alta para reduzir o número de ventiladores do condensador ligados, dessa forma reduzindo o nível sonoro da máquina. Além disso, se o Limite de Capacidade de Baixo Ruido em Período Noturno (Start Hour, LS.LT) tiver sido configurado, a capacidade da unidade estará limitada ao nível programado. Este modo será finalizado uma vez que o Tempo Final de Baixo Ruído Noturno (LS.ND) foi atingido.

System Manager Active (Gerenciador do Sistema Ativo)

Este modo é verificado quando a unidade está ligada ou desligada. Ele fica ativo se um Gerenciador do Sistema, como o Supervisor de Construção, Gerenciador do Sistema Chillervisor, ou outro dispositivo CCN estiver com o controle da máguina.

Quando este modo estiver ativo, a máquina irá responder aos comandos específicos recebidos do Gerenciador do Sistema. O modo será encerrado se o controle do Gerenciador do Sistema for liberado.

Master Slave Control Active (Controle Mestre-Escravo Ativo)

Este modo é verificado quando a unidade estiver ligada. Ele fica ativo se o Controle Mestre Escravo tiver sido ativado. Isto ocorre quando duas máquinas são programadas, uma como mestre (Master/Slave Select, MSSL=1 [Mestre]) e a outra como escrava (Master/ Slave Select, MSSL=2 [Escrava]).

Tanto as máquinas mestre como as escravas irão responder aos comandos de controle de capacidade emitidos pelo controlador mestre. Isso pode incluir alterações do ponto de controle e dos comandos de limite de demanda. Este modo irá terminar quando o Controle Mestre-Escravo tiver sido desabilitado.

Auto Changeover Active (Alteração Auto Ativa)

Este Modo Não Está Disponível.

Free Cooling Active (Resfriamento Natural Ativa)

Este Modo Não Está Disponível.

Reclaim Active (Recuperação Ativa)

Este Modo Não Está Disponível.

Electric Heat Active (Aquecimento Elétrico Ativo)

Este Modo Não Está Disponível.

Heating Low EWT Blockout (Bloqueio de Baixo Aquecimento EWT)

Este Modo Não Está Disponível.

Condenser Pumps Rotation (Rotação das Bombas do Condensador)

Este Modo Não Está Disponível.

Ice Mode In Effect (Modo de Fabricação de Gelo Ativo)

Este modo é verificado quando a unidade é ligada. Ele fica ativo quando a variável Set Point de Gelo (Cooling Ice Setpoint, CSP.3) estiver em uso. Enquanto permanecer neste modo, o Set Point Ativo (Current Setpoint, SETP) exibirá o valor de Cooling Ice Setpoint, CSP.3 e a unidade funcionará até o Set Point de Gelo (CSP.3).

O modo terminará quando o Set Point (CSP.3) estiver fora de serviço.

Defrost Active On Cir A (Degelo Ativo no Circuito A) Este Modo Não Está Disponível.

Defrost Active On Cir B (Degelo Ativo no Circuito B) Este Modo Não Está Disponível.

Low Suction Circuit A (Baixa Sucção Circuito A)

Low Suction Circuit B (Baixa Sucção Circuito B)

Low Suction Circuit C (Baixa Sucção Circuito C)

Estes modos são verificados quando o circuito estiver ligado. O modo de circuito apropriado será ativado se uma das seguintes condições for verdadeira:

- Se a temperatura saturada de sucção (SST) do circuito for superior a 3.3°C, menor que o ponto de congelamento e o "approach" (Temperatura de Saída de Água - SST) e o superaquecimento (Temperatura do gás de sucção - SST) do evaporador forem maiores que 8.3°C.
- 2. Se o circuito estiver ligado e a SST do circuito for superior a 10.0°C, abaixo do ponto de congelamento por mais de 90 segundos.
- 3. Se a temperatura saturada de sucção do circuito for superior a 3.3°C, abaixo do ponto de congelamento por mais de três minutos.

Para um sistema de Água tratada (Cooler Fluid Type, FLUD =1), o ponto de congelamento é de 1,1°C. Para sistemas de brine (salmoura) com temperatura média (Cooler Fluid Type, FLUD=2), o ponto de congelamento da salmoura é (Brine Freeze Setpoint, LOSP).

Para o critério 1, nenhuma capacidade adicional será requerida. Para os critérios 2 e 3, a capacidade será diminuída no circuito. O modo será finalizado quando a SST do circuito for maior que o ponto de congelamento menos 3.3°C ou quando o circuito emitir alarme.

Se esta condição for encontrada, veja as Causas Possíveis para Alarmes 56-58 no Manual de Controles.

High DGT Circuit A (DGT Elevado No Circuito A)

Este Modo Não Está Disponível.

High DGT Circuit B (DGT Elevado no Circuito B)

Este Modo Não Está Disponível.

High DGT Circuit C (DGT Elevado no Circuito C)

Este Modo Não Está Disponível.

High Pressure Override Cir A (Limite de Pressão de Alta Circuito A)

High Pressure Override Cir B (Limite de Pressão de Alta Circuito B)

6. Operação (continuação)

High Pressure Override Cir C (Limite de Pressão de Alta Circuito C)

Este modo é verificado quando o circuito é ligado. O modo de circuito adequado ficará ativo se a pressão de descarga do circuito, Discharge Pressure Circuit A (Discharge Pressure, DP.A), pressão de descarga do circuito B (Discharge Pressure, DP.B) ou pressão de descarga do circuito C (Discharge Pressure, DP.C), forem maiores que o limiar de alta pressão (High Pressure Threshold, HP.TH).

A capacidade do circuito afetado será reduzida. Dois minutos após a redução da capacidade, a temperatura saturada de condensação do circuito (SCTt+2) é calculada e armazenada. O circuito afetado não terá permissão de adicionar capacidade por pelo menos 5 minutos após a redução de capacidade. Se após 5 minutos, a temperatura saturada de condensação for inferior a SCTt+2 1,7°C, em seguida, se for necessário, a capacidade percentual será adicionada. Se a capacidade adicional for necessária, o controle irá procurar outros circuitos para adicionar capacidade.

Este modo irá terminar quando a temperatura saturada do circuito de condensação for inferior a SCT_{t+2} 1,7°C. Se esta condição for encontrada, veja as Causas Possíveis para Alarmes A1.03. no Manual de Controles.

Low Superheat Circuit A (Baixo Superaquecimento Circuito A)

Low Superheat Circuit B (Baixo Superaquecimento Circuito B)

Low Superheat Circuit C (Baixo Superaquecimento Circuito C)

Este modo é verificado quando o circuito estiver ligado. O modo de circuito apropriado estará ativo se o superaquecimento do circuito (temperatura do gás de descarga - SCT) for inferior a 10°C.

Nenhuma capacidade adicional será adicionada até que o superaquecimento do circuito seja superior a 10°C. O controle procurará outros circuitos para adicionar capacidade se forem necessárias etapas adicionais de capacidade. Este modo irá terminar uma vez que o superaquecimento do circuito afetado for superior a 10°C. Se esta condição for encontrada, veja as Causas Possíveis para Alarmes P.11. P.12 e P.13, no Manual de Controles.

Sensores

O controle eletrônico usa até 17 termistores para a detecção de temperaturas e até 12 transdutores para a detecção de pressão para o controle da operação do chiller. Estes sensores estão descritos abaixo.

Termistores (Tabelas 7-8B)

Os termistores que monitoram a operação do chiller são: Entrada de Água no Evaporador, Saída de Água no Evaporador, Saída de Água do Chiller Duplo, Temperatura do Gás de Sucção do Compressor, Temperatura do Gás de Descarga do Compressor, Temperatura do Economizador, Temperatura do Motor do Compressor e Termistores de Temperatura do Ar Externo. Estes termistores são $5k\Omega$ a 25° C e são idênticos em termos de temperatura versus resistência. O termistor de temperatura ambiente é de $10k\Omega$ a 25° C e tem uma relação temperatura versus resistência diferente.

Sensor de Saída de Água do Evaporador

Em todos os tamanhos, este termistor está instalado no bocal de saída de água do evaporador. Veja as Figuras 27 e 28 abaixo.

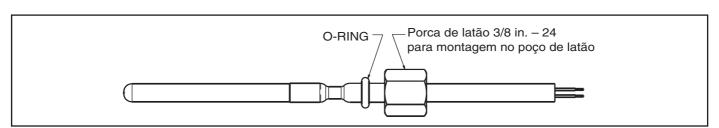


Figura 20 - Termistor 5K (sensor 00PPG000008105A ,conector. HY06AM016)

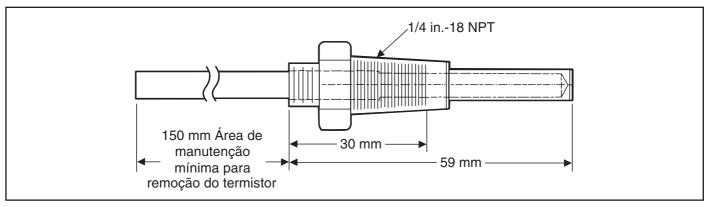


Figura 21 - Poço do Termistor Duplo de Saída de Água (00PPG000008000A)

Sensor de Entrada de Água do Evaporador

Em todos os tamanhos, este termistor é instalado em fábrica no bocal de entrada de água do evaporador .

Temperatura do Gás de Sucção

Este termistor, em todos os tamanhos, é instalado em fábrica em um poço de atrito de encaixe localizado no compressor de cada circuito. Há um termistor para cada circuito.

Temperatura do Gás de Descarga do Compressor

Este termistor, em todos os tamanhos, é instalado em fábrica em um poço de atrito de encaixe localizado na extremidade da descarga do compressor do circuito. Há um termistor para cada circuito.

Temperatura do Economizador

Este termistor é instalado em fábrica em um poço de atrito de encaixe localizado na tubulação do economizador. Há um termistor para cada circuito.

Temperatura do Motor do Compressor

Em todos os tamanhos, esse termistor é incorporado nas bobinas do motor. Há dois termistores em cada compressor. Um sobressalente é fornecido.

Temperatura do Ar Externo

Este sensor é instalado em fábrica na parte traseira da caixa de controle.

Transdutores

Existem quatro transdutores de pressão por circuito, e dois tipos diferentes de transdutores: baixa pressão (conector verde) e alta pressão (conector preto).

M OBSERVAÇÃO

O Módulo de Gerenciamento de Energia (EMM) é exigido para este acessório.

Tipo de Baixa Pressão: Transdutor de Pressão de Sucção (SPT), Transdutor de Pressão do Economizador (EPT).

Tipo de Pressão Alta: Transdutor de pressão de descarga (DPT), Transdutor de pressão do óleo (OPT). Veja a Figura 30 para conhecer o local dos transdutores.

Tabela 9 - Identificação do Termistor

ID do TERMISTOR	DESCRIÇÃO	RESISTÊNCIA A 25°C (77°F)	PONTO DE CONEXÃO
EWT	Termistor de Entrada de Água	5k Ω	MBB-J6-CH2
LWT	Termistor de Saída de Água	5k Ω	MBB-J6-CH1
OAT	Termistor do Ar Ambiente	5k Ω	MBB-J6-CH4
SGTA*	Circuito A Termistor do Gás de Sucção	5k Ω	EXVA-J3-THA
SGTB*	Circuito B Termistor do Gás de Sucção	5k Ω	EXVB-J3-THA
SGTC	Circuito C Termistor do Gás de Sucção	5k Ω	EXVC-J3-THA
DGTA	Circuito A Termistor do Gás de Descarga	5k Ω	CPM-A-J9-CH02
DGTB	Circuito B Termistor do Gás de Descarga	5k Ω	CPM-B-J9-CH02
DGTC	Circuito C Termistor do Gás de Descarga	5k Ω	CPM-C-J9-CH02
ECTA	Circuito A Termistor do Economizador	5k Ω	EXVA-J3-THB
ECTB	Circuito B Termistor do Economizador	5k Ω	EXVB-J3-THB
ECTB	Circuito C Termistor do Economizador	5k Ω	EXVC-J3-THB
DUAL	Termistor LWT Chiller Duplo	5k Ω	MBB-J6-CH3
CAMT	Circuito A Temperatura do Motor	5k Ω	CPM-A-J9-CH01
CBMT	Circuito B Temperatura do Motor	5k Ω	CPM-B-J9-CH01
CCMT	Circuito C Temperatura do Motor	5k Ω	CPM-C-J9-CH01
SPT	Termistor de Temperatura Ambiente	10k Ω	EMM-J6-CH2

6. Operação (continuação)

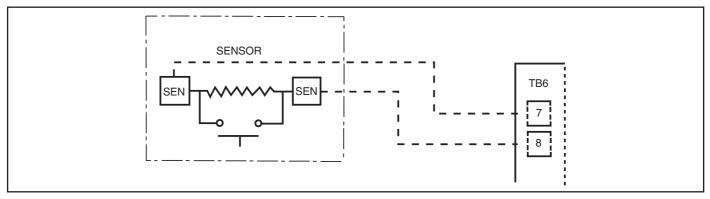


Figura 22 - Sensor Típico de Temperatura Ambiente Remota (33ZCT55SPT) Fiação

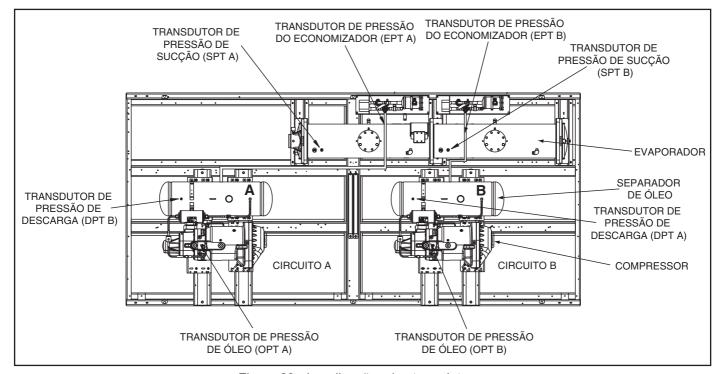


Figura 23 - Localizações dos transdutores

Tabela 10a - Temperatura (°F) vs Resistência do Termistor 5K

TEMP	RESISTÊNCIA	TEMP	RESISTÊNCIA	TEMP	RESISTÊNCIA
(F) -25	(Ohms) 98,010	(F) 59	(Ohms) 7,686	(F)	(Ohms)
-24	94,707	60	7,665	144	1,165
-23	91,522	61	7,468	145	1,141
-22	88,449	62	7,277	146	1,118
-21	85,486	63	7,091	147	1,095
-20	82,627	64	6,911 6,735	148	1,072
–19 –18	79,871 77,212	65 66	6,564	149 150	1,033 1,072 1,050 1,029
–17	74,648	67	6,399	151	1,007
–16	72,175	68	6,238	152	986
-15	69,790	69	6,081	153	965
–14	67,490	70	5,929	154	945
–13	65,272	71	5,781	155	925
–12	63,133	72	5,637	156	906
–11	61,070	73	5,497	157	887
-10 -9	59,081	74 75	5,361 5,229	158 159	868 850
-8	57,162 55,311	76	5,101	160	832
-7	53,526	77	4,976	161	815
-6	51,804	78	4,855	162	798
-5	50,143	79	4,737	163	782
-4	48,541	80	4,622	164	765
-3	46,996	81	4,511	165	750
−2	45,505	82	4,403	166	734
−1	44,066	83	4,298	167	719
0	42,679	84	4,196	168	705
1	41,339	85	4,096	169	690
2	40,047	86 87	4,000 3,906	170 171	677 663
3 4	38,800 37,596	88	3,814	172	650
5	36,435	89	3,726	173	638
6	35,313	90	3,640	174	626
7	34,231	91	3,556	175	614
8	33,185	92	3,474	176	602
9	32,176	93 94	3,395 3,318	177 178	591 581
10 11	31,202 30,260	95	3,243	179	570
12	29,351	96	3,170	180	561
13	28,473	97	3,099	181	551
14	27,624	98	3,031	182	542
15	26,804	99	2,964	183	533
16	26,011	100	2,898	184	524
17	25,245	101	2,835	185	516
18	24,505	102	2,773	186	508
19	23,789	103	2,713	187	501
20	23,096	104	2,655	188	494
21	22,427	105	2,597	189	487
22	21,779	106	2,542	190	480
23	21,153	107	2,488	191	473
24	20,547	108	2,436	192	467
25	19,960	109	2,385	193	461
26 27	19,393 18,843	110 111	2,385 2,335 2,286	194 195	456 450
28	18,311	112 113	2,239	196 197	445 439
29 30	17,796 17,297	114	2,192 2,147	198	434
31	16,814	115	2,103	199	429
32	16,346	116	2,060	200	424
33	15,892	117	2,018	201	419
34	15,453	118	1,977	202	415
35	15,027	119	1,937	203	410
36	14,614	120	1,898	204	405
37	14,214	121	1,860	205	401
38	13,826	122	1,822	206	396
39	13,449	123	1,786	207	391
40	13,084	124	1,750	208	386
41	12,730	125	1,715	209	382
42	12,387	126	1,680	210	377
43	12,053	127	1,647	211	372
44	11,730	128	1,614	212	367
45	11,416	129	1,582	213	361
46	11,112	130	1,550	214	356
47	10,816	131 132	1,519	215 216	350
48 49	10,529 10,250	133	1,489 1,459	217	344 338
50	9,979	134	1,430	218	332
51	9,717	135	1,401	219	325
52	9.461	136 137	1,373 1,345	220 221	318 311
53 54	9,213 8,973	138	1,318	222	304
55	8,739	139	1,291	223	297
56	8,511	140	1,265	224	289
57 58	8,291 8,076	141 142	1,240 1,214	225	282
50	0,070	142	1,414		

6. Operação (continuação)

Tabela 10b - Temperatura (°C) vs Resistência do Termistor 5K

TEMP	RESISTÊNCIA	TEMP	RESISTÊNCIA	TEMP	RESISTÊNCIA
(C)	(Ohms)	(C)	(Ohms)	(C)	(Ohms)
-32	100,260	15	7,855	62	1,158
-31	94,165	16	7,499	63	1,118
-30	88,480	17	7,161	64	1,079
-29	83,170	18	6,840	65	1,041
-28	78,125	19	6,536	66	1,006
-27	73,580	20	6,246	67	971
-26	69,250	21	5,971	68	938
-25	65,205	22	5,710	69	906
-24	61,420	23	5,461	70	876
-23	57,875	24	5,225	71	836
-22	54,555	25	5,000	72	805
-21	51,450	26	4,786	73	775
-20	48,536	27	4,583	74	747
-19	45,807	28	4,389	75	719
-18	43,247	29	4,204	76	693
-17	40,845	30	4,028	77	669
-16	38,592	31	3,861	78	645
-15	38,476	32	3,701	79	623
-14	34,489	33	3,549	80	602
-13	32,621	34	3,404	81	583
-12	30,866	35	3,266	82	564
-11	29,216	36	3,134	83	547
-10	27,633	37	3,008	84	531
-9	26,202	38	2,888	85	516
-8	24,827	39	2,773	86	502
-7	23,532	40	2,663	87	489
-6	22,313	41	2,559	88	477
-5	21,163	42	2,459	89	466
-4	20,079	43	2,363	90	456
-3	19,058	44	2,272	91	446
-2	18,094	45	2,184	92	436
-1	17,184	46	2,101	93	427
0	16,325	47	2,021	94	419
1	15,515	48	1,944	95	410
2	14,749	49	1,871	96	402
3	14,026	50	1,801	97	393
4	13,342	51	1,734	98	385
5	12,696	52	1,670	99	376
6	12,085	53	1,609	100	367
7	11,506	54	1,550	101	357
8	10,959	55	1,493	102	346
9	10,441	56	1,439	103	335
10	9,949	57	1,387	104	324
11	9,485	58	1,337	105	312
12	9,044	59	1,290	106	299
13	8,627	60	1,244	107	285
14	8,231	61	1,200		

7. Serviço

Conjunto do Economizador

Cada circuito nas unidades 30XS tem um conjunto de economizador.

Válvula de Expansão Eletrônica (EXV)

Veja a Figura 32 para uma vista em corte da EXV. O refrigerante líquido à alta pressão entre na válvula através da parte superior. À medida que o refrigerante atravessa o orifício, a pressão cai e o refrigerante muda para uma condição de duas fases (líquido e vapor). A válvula de expansão eletrônica funciona por meio da ativação eletronicamente controlada de um motor de passo. O motor de passo permanecerá na posição, a menos que pulsos de potência acionem os dois conjuntos discretos dos enrolamentos do estator do motor para rotação em ambas as direções. A direção depende da relação de fase dos pulsos de energia.

O motor opera diretamente o fuso, onde movimentos rotativos são transformados em movimento linear pela transmissão no conjunto da gaiola. O cone da válvula é do tipo V-port que inclui um desligamento positivo quando fechado.

O grande número de passos e o longo curso resultam em um controle bastante preciso da vazão do refrigerante. O motor tem 3690 (principal) ou 2785 (economizador) passos.

Controle Principal da EXV (SGT)

Cada circuito possui um termistor localizado na extremidade da descarga do compressor (DGT) e outro localizado na cavidade do motor do compressor (SGT). Cada circuito também tem um transdutor de pressão para descarga e sucção. A pressão de descarga e sucção medida pelos transdutores é convertida em temperaturas saturadas. A lógica do controle principal da EXV usa o superaquecimento de descarga para controlar a posição da EXV. A diferença entre a temperatura do gás de descarga e a temperatura de descarga saturada é o superaquecimento. O módulo EXV controla a posição do motor de passo da válvula de expansão eletrônica para manter o set point do superaquecimento de descarga.

A lógica de controle da EXV possui diversos limites (overrides) que são usados também para o controle da posição da EXV.

- Aproximação (approach) entre a SST (Temp. Sucção Saturada) e LWT (Temperatura de Saída de Água)
- Máxima Pressão de Operação (MOP).

Aproximação (Approach)

Se a aproximação (pinçamento), que é a diferença entre a temperatura da saída de água e a temperatura de sucção saturada, for igual ou menor que o set point de pinçamento (pinch), a EXV não abrirá, mesmo que não seja atingido o set point do superaquecimento de descarga. O set point de pinçamento é calculado com o uso do superaquecimento de sucção, superaquecimento de descarga e compensação do pinçamento.

A compensação do pinçamento é usada para ajustar o set point do pinçamento calculado a fim de controlar a acuracidade de transdutores e sensores.

MOP

A EXV é usada também para limitar a temperatura de sucção saturada (SST) do evaporador para 16,6°C (62°F). Isto torna possível a partida em temperaturas mais altas do fluido no evaporador sem sobrecarregar o compressor. Geralmente, isto é conhecido como MOP (máxima pressão de operação). Se a SST for igual ou maior que o ponto de ajuste da MOP, a MBB tentará controlar a posição da EXV para manter o ponto de ajuste da MOP.

Baixo Superaquecimento de Descarga

O superaquecimento da descarga que dei o compressor é mantido entre aproximadamente 10°C e 14°C (18°F e 25°F) ou menos. Como o status da EXV é comunicado à Placa da Principal (MBB) e é controlado pelos módulos EXV, é possível localizar a posição da válvula. A unidade é então protegida contra a perda de carga e uma falha na válvula. Durante a partida inicial a EXV está completamente fechada. Após um período de inicialização, a posição da válvula é indicada pelo módulo da EXV pelo constante monitoramento de sua movimentação.

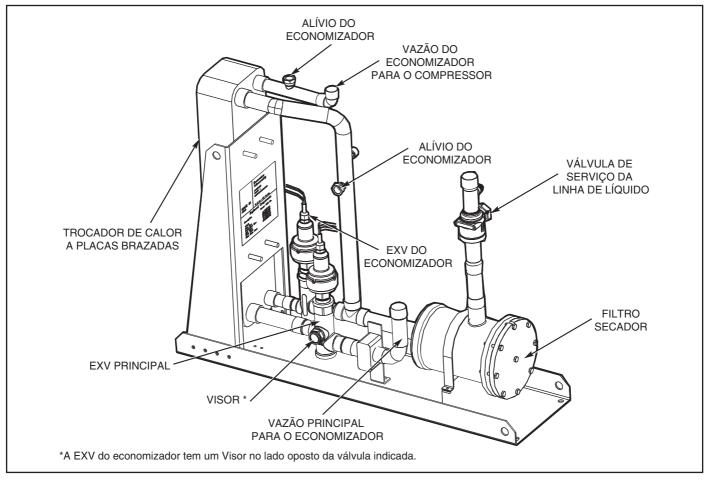


Figura 24 - Montagem do Economizador

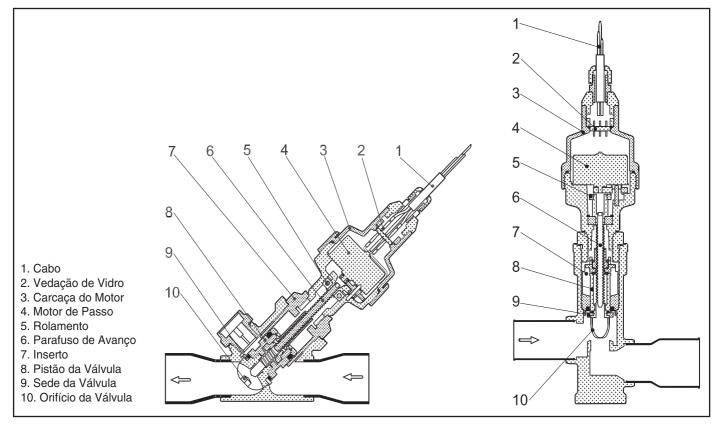


Figura 25 - Vista em corte da Válvula de Expansão Eletrônica

Controle da EXV do Economizador

A EXV do economizador é controlada pela placa EXV do circuito. Há um termistor de temperatura do gás do economizador e um transdutor de pressão do economizador localizados na linha que vai do conjunto do economizador até o compressor. A pressão do economizador é convertida em temperatura saturada e é usada para o cálculo do superaquecimento do economizador. O superaquecimento do economizador é igual à temperatura do economizador menos a temperatura saturada do economizador. A EXV do economizador funciona somente durante condições normais em que a capacidade do circuito é maior que 75%. Assim que a capacidade do circuito excede 75%, a MBB começará a controlar a EXV do economizador para manter o set point de superaquecimento do economizador, que é de aproximadamente 4.4°C a 6.7°C (8°F a 12°F). Se a capacidade do circuito for inferior a 75%, a EXV do economizador será fechada.

A EXV do economizador EXV tem um limite (override). Se a temperatura do gás de descarga exceder 90,6°C (195°F), a EXV do economizador vai começar a abrir. A EXV será controlada para manter a temperatura do gás de descarga em aproximadamente 90.6°C (195°F).

Se parecer que a EXV principal ou a EXV do economizador não está controlando corretamente a operação do circuito para manter o superaquecimento correto, há várias verificações que podem ser feitas com o uso de funções de teste e recursos de inicialização incorporados ao controle do microprocessador. Consulte a seção de teste de serviço para testar as EXVs .

Procedimento de Diagnóstico e Solução de Problemas da EXV

Há duas EXVs diferentes no economizador, ambas as EXVs do economizador têm um total de 2.785 passos. Existem três diferentes EXVs principais, os quais tem um total de 3.690 passos.

O motor da EXV se movimenta a 150 passos por segundo. Ao comandar a válvula para 0% ou 100%, 160 passos adicionais serão acrescidos ao movimento para assegurar que a válvula esteja completamente aberta ou fechada.

Siga os passos abaixo para diagnosticar e corrigir problemas da EXV. Em primeiro lugar, verifique a operação do motor da EXV. Mude a chave Habilitar/Desligar/Contato Remoto (EOR) para a posição Desligar (Off). Verifique a EXV do circuito adequado, Circuit A EXV % Open (Circuit A EXV Position, EXV.A), Circuit B EXV % Open (Circuit B EXV Position, EXV.B), ou Circuito C EXV % Open (Circuit C EXV Position, EXV. C). O valor atual "0" será exibido. Aumente a posição da EXV para selecionar a posição da válvula em 100%. Deve-se sentir o atuador se movendo através da EXV. Para fechar a válvula, selecione 0%. O atuador deverá dar um "estalo" quando atingir o fundo de seu curso. Veja a Tabela abaixo para obter uma lista dos modos e sub-modos.

Tabela 11 - Modos e Submodos EXV

TIPO E CIRCUITO DA EXV	CAMINHO TOUCH PILOT™
EXV, Circuito A	Main Menu → Status → CIRCA_AN
EXV, Circuito B	Main Menu → Status → CIRCB_AN
EXV, Circuito C	Main Menu → Status → CIRCC_AN
Economizer EXV, Circuito A	Main Menu → Status → QCK_TST1
Economizer EXV, Circuito B	Main Menu → Status → QCK_TST1
Economizer EXV, Circuito C	Main Menu → Status → QCK_TST1

Se a válvula não estiver funcionando corretamente, continue com o seguinte procedimento de teste:

Verifique a chave DIP de oito posições na placa quanto ao endereço correto (Tabela 12). Verifique os sinais de saída da EXV nos terminais adequados no módulo EXV.

Tabela 12 — Entradas da chave DIP 1 (S1)

POSIÇÃO DA CHAVE DIP	FUNÇÃO	DEFINIÇÃO	SIGNIFICADO
1	Configuração de partida	OFF	Partida transversal à linha.
	Coringulação de partida	ON	Partida em delta Y.
	Posição do transformador	OFF (2), OFF (3)	O TC está localizado no delta do motor.
2, 3	de corrente (TC)	ON (2), OFF (3)	O TC está localizado na linha principal.
2, 3	de corrente (10)	OFF (2), ON (3)	Reservado para uso futuro.
		ON (2), ON (3)	Inválido; provocará um alarme de configuração MTA.
	Seleção do transformador	OFF (4), OFF (5), OFF (6)	100A/1 V CT1
	de corrente (TC)	ON (4), OFF (5), OFF (6)	100A/0.503V CT2
	de corrente (10)	OFF (4), ON (5), OFF (6)	100A/0.16V CT3
4, 5, 6		ON (4), ON (5), OFF (6)	Inválido; provocará um alarme de configuração MTA.
4, 3, 0		OFF (4), OFF (5), ON (6)	Inválido; provocará um alarme de configuração MTA.
		ON (4), OFF (5), ON (6)	Inválido; provocará um alarme de configuração MTA.
		OFF (4), ON (5), ON (6)	Inválido; provocará um alarme de configuração MTA.
		ON (4), ON (5), ON (6)	Inválido; provocará um alarme de configuração MTA.
7	Ação de falha do contator	OFF	Todas as unidades devem estar desligadas.
,	Ação de lama do contator	ON	Usado quando um disjuntor em shunt estiver disponível
			na unidade.
8	Não usada		_

Conecte o condutor de teste positivo ao terminal 5 da EXV(X)-J2A para EXV(X) e ao terminal 5 da EXV(X)-J2B para EXV(X) do economizador. Com o uso do procedimento de teste de serviço (ver neste manual); mova a saída da válvula sob teste para 100%. NÃO provoque curto entre os condutores do medidor e entre o pino 5 e qualquer outro pino, pois ocorrerão danos na placa. Durante os próximos segundos, conecte cuidadosamente o condutor de teste aos pinos 1, 2, 3 e 4 em sequência. Os voltímetros digitais obterão a média deste sinal e exibirão aproximadamente 6 Vdc. Se a saída permanecer em uma tensão constante diferente de 6 Vcc ou exibir 0 volt, remova o conector da válvula e faça nova verificação.

Selecione 0% para fechar a válvula.

⚠ OBSERVAÇÃO

A saída da placa EXV é de 12 Vcc quando a válvula estiver estacionária.

Veja a Tabela 13 abaixo. Se o problema persistir, troque a placa da EXV. Se a leitura estiver correta, a válvula de expansão e a fiação da EXV devem ser verificadas. Verifique o conector EXV e a fiação de interconexão.

- Verifique a codificação de cores e as conexões dos fios. Certifique-se de que estão conectados aos terminais corretos na placa EXV e no plugue EXV e que os cabos não estejam trocados.
- Verifique a continuidade e o aperto da conexão em todos os terminais de pinos.

Verifique a resistência dos enrolamentos do motor EXV. Remova o plugue do módulo EXV EXV (X)-J2A para a EXV principal e EXV (X)-J2B para EXV do economizador. Verifique a resistência dos dois enrolamentos entre os pinos 1 e 3 para um enrolamento e pinos 2 e 4 para o outro enrolamento. A resistência deve ser 52 ohms (± 5.2 ohms). Verifique também eventuais curtos com a terra nos pinos 1-4.

Tabela 13 - Entradas e Saídas da Placa EXV

DECODIOÃO.	5N75 4 5 4 /5 4 /5 4	NOME DO PONTO DO		POI	NTO DE CONEXÃO	
DESCRIÇÃO	ENTRADA/SAÍDA	TIPO DE E/S	MÓDULO DE EXIBIÇÃO	Pino	Notação	
Enougie					EXVX-J1	
Energia (fornecimento de 24 vca)	_	_	_	11	24 Vac	
(Iomecimento de 24 vea)				12	Aterramento	
					EXVX-J4	
Rede local de	_	_	_	1	RS485 Porta (D+)	
equipamento	_	_	_	2	RS485 Porta (Gnd)	
				3	RS485 Porta (D-)	
Circuito X Termistor			Temperatura de sucção	EXVX-J3		
do Gás de Sucção	SGT X	Termistor 5k	do compressor, SGT.X	TH		
			do compressor, ear.x	Α		
				EXVX-J3		
Circuito X Termistor do	ECT X	Termistor 5k	Temperatura do gás do economizador, ECT.X	TH		
Gás de Economizador				В		
				EXVX-J2A		
				1		
Circuito X EXV	EXV-X	Motor de passo	Posição EXV, EXV.X	2		
		'	,	3		
				4		
					EXVX-J2A	
				1		
Circuito X	FCFXV-X	Motor de passo	Posição EXV do economizador	2		
Economizador EXV		Wotor de passo	do circuito X, ECO.X	3		
				4		

^{*&}quot;X" denota o circuito, A, B ou C.

Inspeção /Abertura das Válvulas de Expansão Eletrônica

Providencie juntas de vedação de reposição antes de abrir a EXV. Não reutilize juntas de vedação.

Para verificar a operação física de uma EXV, as seguintes etapas devem ser realizadas se a unidade não possuir a opção de válvula de serviço, a carga completa necessita ser recuperada usando as técnicas de recuperação adequadas indicadas nas Etapas 1-3 abaixo. Se a unidade tiver válvulas de serviço de descarga, executar somente as Etapas 1 e 2.

- 1. Feche a válvula de serviço da linha de líquido do circuito a ser verificado. Coloque a chave Habilitar/ Desligar/Contato Remoto na posição Desligar (Off). Entre no Modo de teste de serviço e mude Service Test Enable, T.REQ de OFF para ON. Uma senha pode ser necessária. Coloque a chave EOR na posição Habilitar (Enable). No submodo COMP, habilite um dos compressores (CP.xn) do circuito. Deixe o compressor funcionar até que o visor do manômetro indique 68,9 kPa (10 psig). Desligue o compressor. Imediatamente após o compressor desligar, feche manualmente as válvulas esferas. Se a unidade estiver equipada com válvulas de serviço de sucção, válvula de serviço de descarga e válvulas de serviço do economizador, feche todas as válvulas. Com o fechamento das válvulas, será reduzida ao mínimo a quantidade de carga que terá de ser removida do sistema após o recolhimento.
- 2. Remova todo o refrigerante remanescente do lado de baixa pressão do sistema com o uso de técnicas de recuperação adequadas. O conjunto do economizador possui uma conexão de acesso de ¼" que pode ser usada para a remoção de carga da entrada das EXVs. Desligue a alimentação elétrica da linha dos compressores.
- 3. O motor da válvula de expansão está hermeticamente fechado dentro da porção superior da válvula. Veja a Figura 32. Desconecte o plugue EXV. Desparafuse com cuidado a parte do motor do corpo da válvula. O acionador da EXV sairá com a parte do motor. Reconecte o plugue da EXV.

↑ CUIDADO

Certifique-se de que o refrigerante seja removido tanto na entrada e quanto na saída dos conjuntos da EXV. Danos poderão ocorrer no equipamento.

4. Inicie a etapa de teste da EXV adequada sob o (QUIC) modo de teste de serviço. Localize o item desejado Circuit A EXV Position, EXV.A, Circuit B EXV Position, EXV.B, ou Circuit C EXV Position, EXV. C. Mude a posição para 100%. Observe a operação do parafuso de avanço. Veja a Figura 32. O motor deve estar girando, elevando o acionador para mais próximo do motor. O movimento do atuador do motor deve ser suave e uniforme da posição totalmente fechada para a posição totalmente aberta. Selecione 0% e verifique a operação aberta para fechada. Se a válvula estiver corretamente conectada ao processador e estiver recebendo sinais corretos, ainda que não funcione como descrito acima, a parte vedada do motor da válvula deverá ser substituída.

⚠ IMPORTANTE

Providencie juntas de vedação de reposição antes de abrir a EXV. Não reutilize juntas de vedação.

Se o motor for reinstalado, certifique-se de usar uma nova junta na montagem. Veja a Figura 33. É mais fácil instalar o conjunto do motor com o pistão na posição totalmente fechada. Insira o motor no corpo da EXV. Fixe o motor ao corpo com torque de aperto até 50 N-m (36 lb-ft) e, em seguida, aperte a válvula mais 30 graus.

Visor de líquido (umidade)

O fluxo claro de refrigerante indica carga suficiente no sistema. Bolhas no visor indicam sistema insuficientemente carregado ou presença de gases não condensáveis. A presença de umidade no sistema, medida em partes por milhão (ppm), altera a cor do indicador. Veja a tabela abaixo. Troque o filtro secador no primeiro sinal de umidade no sistema.

Tabela 14 - Indicadores de cor na presença de Umidade no Refrigerante

INDICADOR DE COR	R-134A 24°C (75°F) [ppm]	R-134A 47°C (116°F) [ppm]
Verde - Seco	Menor que 30	Menor que 45
Amarelo-verde - Cuidado	Entre 30 - 100	Entre 45 - 170
Amarelo - Úmido	Maior que 100	Maior que 170

Filtro Secador

Sempre que o visor de umidade/líquido indicar a presença de umidade, substitua o(s) filtro(s) secador(es). Há um conjunto de filtro secador em cada circuito com dois núcleos. As unidades 30XS_100 a 120 tem um núcleo por circuito. As unidades 30XS_140 e 160 têm dois núcleos, no circuito A e um para o circuito B. As unidades 30XS_180 a 240 tem dois núcleos por circuito.

Válvula de serviço da linha de líquido

Esta válvula está localizada imediatamente à frente do filtro secador, e tem uma conexão de acesso de 1/4" para carga no campo. Em combinação com a válvula de serviço de descarga do compressor, cada circuito poderá ser recuperado para o lado de alta pressão para fins de reparos.

Conjunto do Compressor

As unidades 30XS utilizam compressores de parafuso com uma válvula deslizante (slide valve) de modulação que varia a capacidade de 30% a 100% da capacidade do compressor para cada circuito. Veja na Figura 34 a ilustração de um compressor 06T típico. A posição da válvula deslizante varia de acordo com a abertura e fechamento das duas válvulas solenoides localizadas no compressor. Para descarregar o compressor, ambas as solenoides são desenergizados. Para aumentar a capacidade, ambas as bobinas solenoides são energizadas, o que fará com que a válvula deslizante deslize na direção da posição totalmente carregada. Para interromper o processo de carga, a solenoide 2 é energizado e a solenoide 1 é desenergizada. Isto fará com que a válvula deslizante mantenha sua posição atual. Não há nenhum monitoramento da posição da válvula deslizante.

O controlador utiliza a corrente do compressor como um indicador da posição da slide valve. Assim que a posição calculada da slide valve atingir 100% da capacidade do circuito, o controlador tentará aumentar novamente a capacidade se a corrente do compressor continuar a subir. O controlador continuará a carregar o compressor até que a corrente do compressor não mais aumente. Nesse momento, o controlador energizará as solenoides e o circuito será considerado totalmente carregado. Ver tabela abaixo:

Tabela 15 - Capacidade Nominal das Unidades 30XS

30XS	100	110	120	140	160	180	200	220	240
Ca	Capacidade Nominal do Compressor (toneladas)								
Circ. A	50	60	60	90	100	90	100	120	120
Circ. B	50	50	60	50	60	90	100	100	120

⚠ IMPORTANTE

A unidade deve ser posta em operação pelo menos 12 horas antes para que o visor de líquido possa indicar uma leitura acurada. Com a unidade em funcionamento, o elemento indicador deve estar em contato com o refrigerante líquido para obter-se uma leitura confiável.

Sistema de Óleo do Compressor

Cada compressor/circuito possui seu próprio sistema de óleo, que inclui um filtro de óleo, solenoide, uma válvula de retenção, uma chave de nível do óleo, um transdutor de pressão do óleo e uma válvula de fechamento de óleo. Um sistema de óleo típico é mostrado na Figura 34. Veja a tabela abaixo.

Tabela 16 - Troca de óleo Unidades 30XS

UNIDADE	TROCA DO ÓLEO (gal, [litros])				
30XS	Circuito A	Circuito B			
100 a 120	5,50 [20.8]	5,50 [20.8]			
140 e 160	6,25 [23.7]	5,50 [20.8]			
180 e 200	6,25 [23.7]	6,25 [23.7]			
220	6,75 [25.6]	6,25 [23.7]			
240	6,75 [25.6]	6,75 [25.6]			

Carga de Óleo

Quando uma carga adicional de óleo ou uma carga completa for necessária, esta deve atender as seguintes especificações:

•	Fabricante	Emkarate RL220XL
•	Tipo de óleo	Óleo polioléster sintético para
		uso em compressores de parafuso

Grau de viscosidade ISO 220

⚠ OBSERVAÇÃO

Não reutilize óleo drenado ou qualquer óleo que tenha sido exposto à atmosfera. O óleo está disponível nas quantidades indicadas por seu representante Carrier local:

Tabela 17 - Carga de Óleo

QUANTIDADE	N° DA PEÇA DO ACESSÓRIO
1 Galão	P903-2301
5 Galão	P903-2305

⚠ OBSERVAÇÃO

Uma carga adequada deve estar disponível.

Em caso de dúvida sobre baixa carga de óleo no sistema, siga os passos abaixo:

- Se a unidade desligar de forma repetitiva a partir de um alerta de baixo nível de óleo, isso pode indicar uma carga de óleo inadequada. No entanto, pode indicar também que o óleo não está sendo recuperado do lado baixo do sistema.
- Inicie a operação da unidade com carga total por 1,5 horas. Use o recurso do Modo de Teste manual do Teste de Serviço se a unidade não funcionar normalmente em plena carga.
- Após colocar a unidade em funcionamento por 1 hora e meia em plena carga, deixe a unidade dar nova partida e funcionar novamente. Se os alarmes de baixo nível de óleo persistirem, continue com os passos abaixo.
- 4. Feche a válvula de serviço da linha de líquidos e coloque um manômetro na parte superior do evaporador ou no orifício de serviço da linha de sucção. Habilite o recurso de teste de serviço e gire a chave Habilitar/Desligar/ Contato Remoto para a posição Habilitar (Enable). Dê a partida no circuito desejado ligando-o sob a função TEST: CP.A para o compressor A, CP.B para o compressor B ou CP.C para o compressor C.
- Quando o compressor é acionado com êxito, observe a pressão do evaporador. Quando a leitura de pressão indicar 68,9 kPa (10 psig), vire a Chave de emergência (SW2) para a posição OFF. O compressor deverá parar.
- Abra a válvula de serviço da linha de líquido e deixe a unidade reiniciar normalmente. Se os alarmes de baixo nível de óleo persistirem, continue com os passos a seguir.
- 7. Se nenhum dos passos anteriores foram bem sucedidos, a unidade estará com pouca carga de óleo. Adicione óleo ao separador de óleo, usando a conexão para acesso com 6,35 mm (1/4 in) na qual o transdutor de pressão de descarga está montado.

Para facilitar o processo de carga de óleo, certifiquese de que a unidade não esteja em funcionamento ao adicionar óleo. Como o sistema fica sob pressão mesmo quando a unidade não estiver em funcionamento, será necessário usar uma bomba adequada para adicionar óleo ao sistema. Utilizando uma bomba adequada, adicione 1,9 litros (1/2 galão) de óleo ao sistema. Continue a adicionar óleo em incrementos de 1,9 litros (1/2 galão) até o problema ser resolvido, até no máximo 5,7 litros (1,5 galão). Se for necessário adicionar níveis carga de óleo no sistema maiores que os de fábrica, contate seu representante local Carrier.

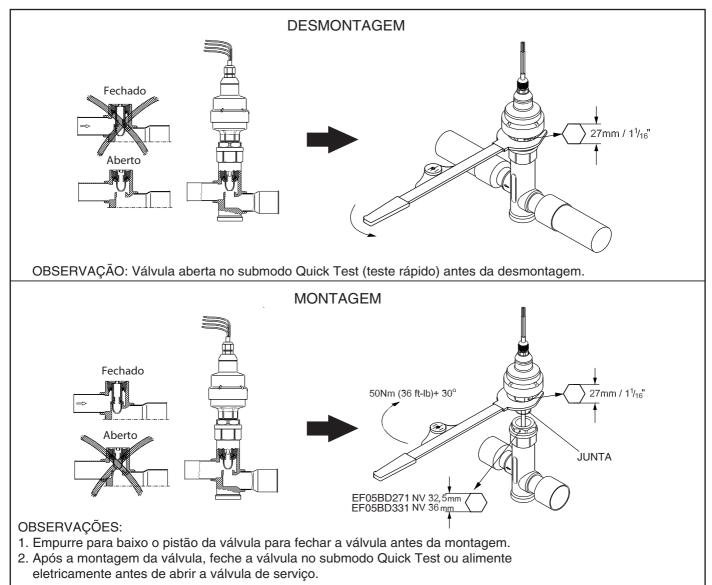


Figura 26 - Desmontagem e Montagem do Motor da EXV

Manutenção do Filtro de óleo

Cada circuito tem um filtro de óleo localizado externamente ao compressor. A queda de pressão da linha de óleo é monitorada pelo controlador. A queda de pressão da linha de óleo é calculada subtraindo-se a pressão do óleo (OP) da pressão de descarga (DP). Se a queda de pressão da linha de óleo exceder 206,8 kPa (30 psi) por 5 minutos, o controlador gerará um alerta de alta queda de pressão no filtro de óleo. O alerta de alta queda de pressão no filtro de óleo não interrompe o funcionamento do compressor. Em vez disso, indica que o filtro de óleo está sujo. Se as perdas de pressão na linha do óleo excederem, a 344,7 kPa (50 psi), o controlador desligará o circuito por falha de máxima pressão diferencial no filtro de óleo.

∴ CUIDADO

O Óleo do compressor está pressurizado. Use as medidas de segurança adequadas ao aliviar a pressão.

Substituição do filtro de óleo

Feche a válvula esfera da linha de óleo localizada na frente do filtro de óleo. Conecte uma mangueira de carga ao orifício do ponto de acesso de 6,35 mm (1/4 in) localizado a jusante da válvula e sangre o óleo aprisionado entre a válvula de serviço e a válvula solenóide do óleo. Aproximadamente um litro de óleo é tipicamente removido durante esse processo. Retire a mangueira de carga. Solte as porcas de ambas as extremidades do filtro de óleo e remova o filtro de óleo. Retire as tampas de proteção do filtro de óleo novo e instale, tomando cuidado para não perder ou danificar o anel O-ring novo localizado no filtro de óleo novo. Faça vácuo na válvula Schrader. Retire a mangueira de carga e abra a válvula esfera da linha de óleo. Verifique ambas as conexões para identificar vazamentos.

Unidades com Evaporador tipo Inundado

Válvula de Serviço de Sucção da Unidade do Evaporador do tipo Inundado

A válvula de serviço de sucção é uma opção pré-instalada na fábrica para unidades 30XS. Ela se localiza na saída de sucção do evaporador. A válvula de serviço de sucção é parafusada entre a saída do evaporador e a flange da tubulação de sucção. O eixo da válvula de serviço de sucção possui um dispositivo de trava para bloquear a válvula na posição totalmente aberta ou na posição totalmente fechada. O dispositivo de trava deve ser extraído antes de se mover o manípulo da válvula até uma posição totalmente aberta ou totalmente fechada. Veja Figura 36a e 36b.

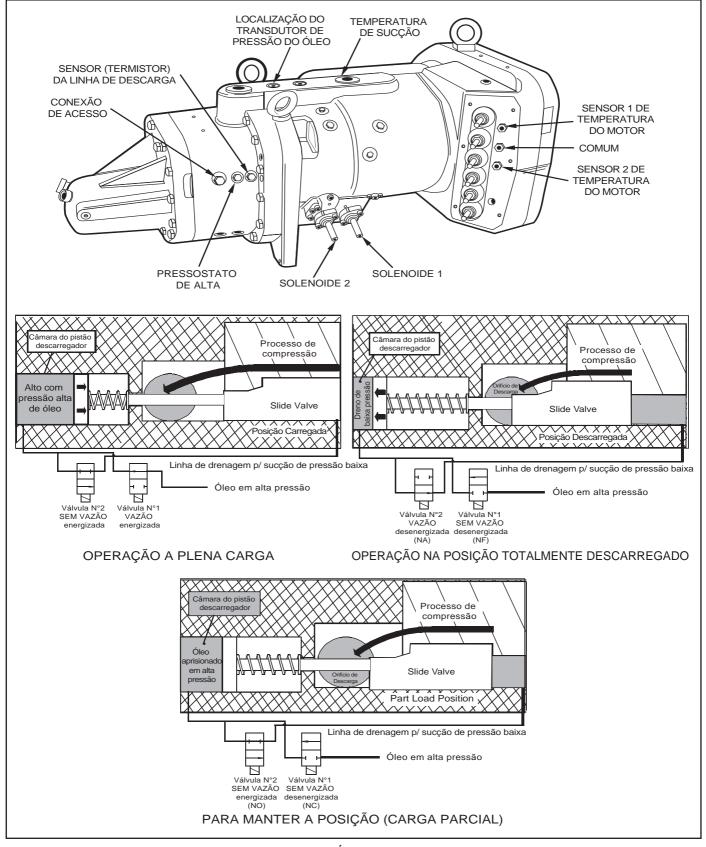


Figura 27 - Sistema de Óleo Típico (Todas Unidades)

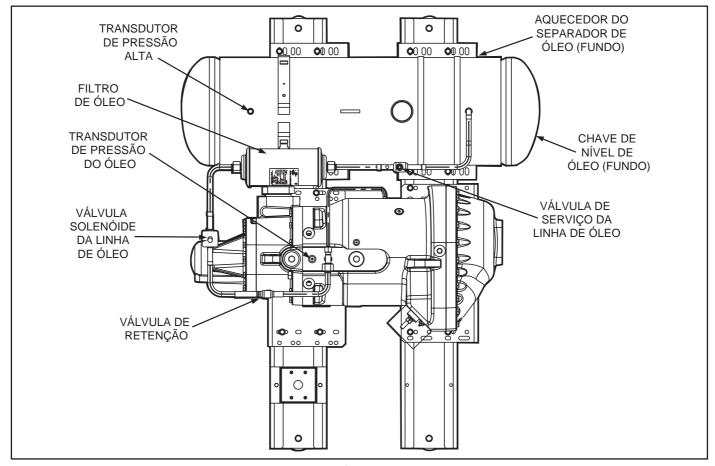


Figura 28 - Sistema de Óleo Típico (Todas Unidades)

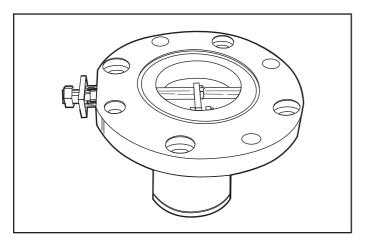


Figura 29a - Dispositivo de travamento da válvula de serviço de sucção, fechada e não travada

VÁLVULA TRAVADA ABERTO

Figura 29b - Dispositivo de travamento da válvula de serviço de sucção, aberta e travada

Baixa Temperatura de Fluido no Evaporador Inundado

A Placa de Principal é programada para desligar o chiller se a temperatura do fluido de saída cair abaixo de 1,1°C (34°F) para água como fluido no evaporador ou abaixo do Set Point (Ponto de Ajuste) de Congelamento de brine (salmoura) (Brine Freeze Setpoint, LOSP) para brine (salmoura) como fluido no evaporador. A unidade será desligada sem recolhimento. Quando a temperatura do fluido sobe 3,3°C (6°F) acima do setpoint do fluido de saída, a segurança é restabelecida e o chiller reinicia. O restabelecimento é automático, desde que esta seja a primeira ocorrência.

⚠ IMPORTANTE

Se a unidade estiver instalada em uma área onde a temperatura ambiente está abaixo de 0°C (32°F), uma solução anticongelante e anti-corrosão de uma resistência de aquecimento na carcaça do evaporador adequada deverá ser utilizada no circuito de água gelada.

Proteção de Perda de Vazão de Fluido no Evaporador

Todas as máquinas 30XS incluem uma chave de fluxo e pressostato diferencial de pressão que protege o evaporador contra a perda de vazão no evaporador.

Tamponamento do Tubo do Evaporador

Um tubo com vazamento pode ser fechado até a sua reposição. O número de tubos fechados determina o prazo limite para a substituição dos tubos no evaporador. Todos os tubos no evaporador podem ser removidos. O fechamento de tubos pode provocar a perda de capacidade e rendimento da unidade, além de maior consumo de energia da bomba. Os tubos com falhas devem ser substituídos o mais rapidamente possível. Até 10% do número total de tubos podem ser fechados antes da necessidade de retubagem. A Figura 30 mostra um tampão Elliott e um corte transversal de um tampão no lugar. Veja as Tabelas 18 e 19 para conhecer os componentes do tampão. Se a falha do tubo ocorrer em ambos os circuitos, o uso dos tampões não irá corrigir o problema. Entre em contato com seu representante local Carrier para uma maior assistência.

Tenha atenção redobrada ao instalar tampões a fim de evitar dados na sessão entre os furos do espelho.

Retubagem do Evaporador

Quando a retubagem for necessária, providencie o serviço de pessoal qualificado com experiência em manutenção e reparação de caldeiras. A maioria dos procedimentos padrões pode ser seguida durante a retubagem dos evaporadores. Um valor de esmagamento ('crush') de 8% é recomendado ao rolar os tubos de reposição no espelho.

Aplique uma gota de Loctite nº 675 ou equivalente na parte superior do tubo antes da rolagem. O propósito desse material é "mergulhar" na área do tubo que não esteja em contato com o espelho e evitar o acúmulo de fluido entre o tubo e o espelho. Os tubos novos também devem entrar em contato com o espelho central para evitar vazamentos no circuito.

Figura 30 - Tubo Tampão Elliott

Tabela 18 - Códigos dos Componentes do Tampão

COMPONENTE	NUMERO DA PEÇA
Para tubos	
Pino de Latão	853103-1*
Anel de Latão	853002*640 ou 657* (meça o tubo antes de fazer o pedido
Para furos sem tubos	
Pino de Latão	853103-1A
Anel de Latão	85102-738
Loctite	N° 675 **
Locquic	"N" **
Extensão do rolete	S82-112/11

^{*} Coloque o pedido diretamente na Carrier

Tabela 19 - Componentes Evaporador Inundado

COMPONENTE	TAMANHO		
COMPONENTE	in.	mm	
Diâmetro do furo no espelho	0.756	19,20	
Diâmetro externo do tubo	0.750	19,05	
Diâmetro interno do tubo depois da rolagem (inclui a expensão, devido à área de manutenção)	0.650 a 0.667	16,51 a 16,94	

Nota: Os tubos substituídos ao longo das partições do trocador deverão estar alinhados com a face do espelho (em ambos os lados).

Torque da Tampa Fundida (Cabeçote)

Preparação - Ao remontar os cabeçotes do evaporador, sempre verifique o estado das juntas de vedação em primeiro lugar. O anel O-ring deve ser substituído se houver sinais visíveis de deterioração, cortes ou danos. Aplique uma fina camada de graxa no anel O-ring antes da instalação. Isto ajudará na fixação do anel O-ring na ranhura enquanto o cabeçote estiver sendo instalado. Aperte todos os parafusos com a seguinte especificação de torque e sequência:

Parafusos de Diâmetro 19,05 mm (3/4 in.) [Grau 5] -> 271 a 305 N-m (200 a 225 ft-lb)

- 1. Instale todos os parafusos com aperto manual.
- A sequência de aperto dos parafusos é descrita na Figura 38. Siga a numeração ou seqüência de letras de modo que a pressão seja aplicada uniformemente ao O-ring.
- 3. Aperte em etapas de um terço até atingir o torque exigido. Fixe todos os parafusos a cada etapa de um terço antes de prosseguir para a próxima etapa de um terço.
- 4. No mais tardar uma hora depois, reaperte todos os parafusos nos valores necessários de torque.
- 5. Após a restauração do refrigerante no sistema, verifique se há vazamentos de refrigerante utilizando as práticas recomendadas de manutenção
- 6. Substitua o isolamento do evaporador.

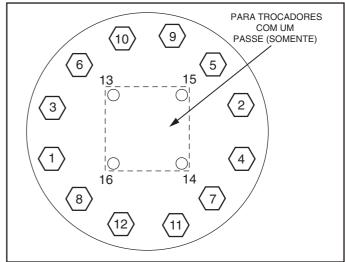


Figura 31 - Sequência de Aperto Recomendada dos Parafusos do Cabeçote do Evaporador

^{**} Podem ser obtidos localmente.

Inspeção/Limpeza do Evaporador (COOLER)

Inspecione e limpe os tubos do evaporador no final do primeiro período de operação. Como esses tubos possuem ranhuras internas, é necessário um sistema de limpeza de tubos do tipo rotativo para limpar completamente os tubos. A condição do tubo no evaporador determinará a frequência programada de limpeza e indicará se é adequado ou não o tratamento da água no circuito de água gelada/brine (salmoura). Inspecione os poços dos sensores de entrada e de saída de água quanto a sinais de corrosão ou incrustação. Substitua o poço se estiver corroído ou remova qualquer incrustação encontrada.

↑ CUIDADO

Incrustações rígidas requerem tratamento químico para sua prevenção ou remoção. Consulte um especialista de tratamento de água para procedimentos adequados de tratamento.

Tratamento da Água dos Trocadores

Água não tratada ou tratada incorretamente pode resultar em corrosão, crostas, erosão ou crescimento de algas. Os serviços de um especialista qualificado em tratamento de água devem ser contratados para desenvolver e monitorar um programa de tratamento.

Recomendações quanto a Qualidade da Água

O suprimento de água deve ser analisado e adequadamente filtrado, tratado e conter dispositivos de controle interno para atender a aplicação e evitar a corrosão, incrustações e deterioração dos componentes da bomba.

Consulte um especialista em tratamento de água ou literatura especializada sobre o assunto.

- 1. Nenhum íon de amônia NH⁴⁺ na água, eles são muito prejudiciais e corroem o cobre. Este é um dos fatores mais importantes para a vida útil de tubulações de cobre. Um teor de vários décimos de mg/l vai corroer severamente o cobre ao longo do tempo. Se necessário, use os ânodos de sacrifício.
- 2. Íons de cloreto CI⁻ também são prejudiciais para o cobre com um risco de perfuração por corrosão por punção. Se possível deve-se manter um nível abaixo de 10 mg/l.
- 3. Íons de sulfato SO₄² podem causar corrosão perfurante se o seu teor é superior a 30 mg/l.
- 4. Nenhum íon de fluoreto (< 0,1 mg/l).

- Nenhum íon de Fe²⁺ e Fe³⁺ com níveis não desprezíveis de oxigênio dissolvido devem estar presentes. Ferro dissolvido < 5 mg/l com oxigênio dissolvido < 5 mg/l.
- Silício dissolvido: Silício é um elemento ácido de água e também pode levar a riscos de corrosão. Conteúdo < 1mg/l.
- 7. Dureza da água: TH > 2,8°C. Valores entre 10 e 25 podem ser recomendados. Isso irá facilitar o depósito em escala que pode limitar a corrosão do cobre. Valores TH que são demasiado elevados podem causar bloqueio de tubulação ao longo do tempo. É desejável um nível de alcalinidade total (TAC) abaixo de 100.
- 8. Oxigênio dissolvido: Qualquer mudança repentina nas condições da oxigenação da água deve ser evitada. É tão prejudicial desoxigenar a água misturando-a com gás inerte, como é o excesso de compostos oxigenados misturados com oxigênio puro. A alteração das condições de oxigenação incentiva a desestabilização dos hidróxidos de cobre e alargamento das partículas.
- Resistência específica condutividade elétrica: Quanto maior a resistência específica, menor tendência à corrosão. Valores acima de 3.000 Ohm/cm são desejáveis. Um ambiente neutro favorece os valores máximos de resistência específica. Valores de condutividade elétrica da ordem de 200-6.000 S/cm podem ser recomendados.
- 10. Ph: pH ideal neutro entre 20-25°C e 7 < pH < 8
 - Se o circuito de água deve ser esvaziado por mais de um mês, o circuito completo deve ser colocado sob carga de nitrogênio para evitar qualquer risco de corrosão por aeração diferencial.
 - Carga e remoção de fluidos do trocador de calor deve ser feito com os dispositivos que devem ser incluídos no circuito da água pelo instalador. Nunca utilize a unidade de trocadores de calor para adicionar fluido de troca de calor.

Orientações de Qualidade da Água Tabela 20 - Qualidade da água

CONDIÇÕES	NÍVEL ACEITÁVEL				
рН	Numa faixa de 7 a 9 para pode ser usado tubos de		e 5 a 9		
Dureza Total	Cálcio e carbonato de ma exceder 20 grãos por gal	-	erão		
Óxidos de Ferro	Menor que 1 ppm.				
Bactérias do Ferro	Nenhuma admissível.				
Corrosão*	Nível Máximo Metal Admissível Coaxial				
	Amônia, Hidróxido de Amônia 0.5 ppm Cu				
	Cloreto de Amônia, Nitrato de Amônia 0.5 ppm Cu				
	Sulfato de Amônia	0.5 ppm	Cu		
	Cloro / Cloretos	0.5 ppm	CuNi		
	Sulfeto de Hidrogênio** Nenhum admissível —				
Salobra e salgada	Use trocador de calor de níquel-cobre quando as concentrações de cálcio (ou cloreto de sódio), superiores a 125 ppm, estiverem presentes. (A água do mar é de aproximadamente 25.000 ppm.)				

^{*} Se a concentração dessas substâncias corrosivas excede o nível máximo permitido, então existe potencial para sérios problemas de corrosão.

NOTA: Para converter ppm para grãos por galão, divida por 17. Dureza em mg/l é equivalente a ppm.

⚠ ATENÇÃO

A Carrier não se responsabiliza quando a água utilizada no sistema estiver fora dos parâmetros recomendados; nesse caso, a garantia dos equipamentos estará suspensa. Água fora dos parâmetros pode ocasionar vazamentos e consequente congelamento da água nos tubos do evaporador.

A água deve estar dentro dos limites de vazão do projeto, limpa e tratada para garantir um desempenho correto da máquina e reduzir o potencial de danos aos tubos devido à corrosão, crostas, erosão ou algas. A Carrier não assume nenhuma responsabilidade por danos ao evaporador resultantes de água não tratada ou tratada de forma incorreta.

Recomendações de Manutenção e Limpeza da Serpentina Condensadora "Gold Fin" (De aletas de alumínio e tubo de cobre)

A limpeza de rotina das superfícies da serpentina é essencial para manter a operação adequada da unidade. A eliminação de contaminação e remoção de resíduos nocivos aumentará bastante a vida útil da serpentina e prolongará a vida da unidade. Os procedimentos de manutenção e limpeza a seguir são recomendados como parte das atividades de manutenção de rotina para prorrogar a vida útil da serpentina.

Remova as Fibras Incrustadas na Superfície da Aleta

As fibras incrustadas na superfície da aleta ou as sujeiras superficiais deverão ser removidas com um aspirador. Se um aspirador não estiver disponível, uma escova de cerdas não-metálicas macia pode ser usada. Em qualquer caso, a ferramenta deve ser aplicada na direção das aletas. As superfícies da serpentina podem ser facilmente danificadas (as extremidades das aletas podem ser facilmente dobradas e danificar o revestimento de uma serpentina "gold fin") se a ferramenta for aplicada sobre as aletas.

OBSERVAÇÃO: O uso de água corrente, como em uma mangueira de jardim, contra uma serpentina de superfície incrustada conduzirá as fibras e a sujeira para o interior da serpentina. Isto dificultará ainda mais os esforços de limpeza. As fibras incrustadas na superfície da aleta devem ser totalmente removidas antes de usar enxágue com água potável em baixa pressão.

Limpeza Periódica com Enxágues de Água

Uma limpeza periódica com enxágue de água limpa é muito benéfica para as serpentinas que são aplicadas em ambientes costeiros ou industriais. Entretanto, é muito importante que o enxágue de água seja feito em água corrente com velocidade muito baixa para não danificar as extremidades das aletas. A limpeza mensal como descrito abaixo é recomendável.

Limpeza de Rotina das Superfícies de Serpentinas

É essencial que seja efetuada a limpeza mensal com produtos de limpeza ecológicos Totaline® para prolongar a vida das serpentinas. Este limpador está disponível na divisão de serviço da Carrier com o código P902-0301 para um recipiente de um galão, e código P902-0305 para recipientes de cinco galões. Recomenda-se que todas as serpentinas sejam limpas com o produto de limpeza de serpentina ecológico Totaline conforme descrito abaixo. A limpeza da serpentina deverá fazer parte dos procedimentos de manutenção programada regulares da unidade para garantir vida longa à serpentina. A não observância da limpeza das serpentinas resultará na redução da durabilidade no ambiente. — Evite o uso de:

- Polidores de serpentinas.
- · Limpeza com ácido antes da pintura.
- · Lavadores de alta pressão.
- Água de baixa qualidade para a limpeza.

^{**} Sulfetos na água oxidam rapidamente quando expostos ao ar, exigindo que não ocorra agitação enquanto a amostra é colhida. Salvo testadas imediatamente no local, a amostra exigirá estabilização com algumas gotas de solução de acetato de zinco um Molar, permitindo a determinação precisa de sulfeto até 24 horas após a coleta. Um pH baixo e alta alcalinidade causa problemas no sistema, mesmo quando ambos os valores estão dentro dos limites recomendados. O termo pH refere-se a acidez, basicidade ou neutralidade do abastecimento de água. Inferior a 7,0 a água é considerada ácida. Acima de 7,0 a água é considerada como básica. Água Neutra contém um pH 7,0.

O produto de limpeza de serpentina ecológico Totaline não é inflamável, hipoalergênico, anti-bactericida e considerado agente biodegradável e não prejudicará a serpentina ou os componentes ao seu redor, como fiação elétrica, superfícies metálicas pintadas ou o isolamento. Desencoraja-se fortemente o uso de produtos de limpeza de serpentina não recomendados, pois eles podem afetar a durabilidade da serpentina e da unidade.

♠ CUIDADO

Produtos químicos agressivos, alvejantes domésticos, ácidos ou limpadores básicos de qualquer tipo não deverão ser usados para limpar as serpentinas internas e externas de qualquer tipo. Pode ser muito difícil remover por enxágue esses produtos da serpentina e eles podem acelerar a corrosão na interface aleta/tubo onde materiais diferentes estão em contato. Se houver sujeira abaixo da superfície da serpentina, use o produto de limpeza de serpentina ecológico Totaline conforme descrito acima.

♠ CUIDADO

Nunca utilize água em alta velocidade de uma lavadora de água de alta pressão, mangueira de jardim ou ar comprimido para limpar uma serpentina. A força do jato de ar ou água dobrará as extremidades das aletas e aumentará a queda de pressão no lado do ar. Pode ocorrer redução de performance da unidade ou desligamento inconveniente da unidade.

Instruções para Aplicação do produto de limpeza de Serpentina Ecológico Totaline:

- Recomenda-se utilizar proteção apropriada para os olhos, como óculos de segurança, durante a mistura e aplicação.
- 2. Remova todas as fibras e sujeira incrustadas na superfície com um aspirador conforme descrito acima.
- 3. Molhe totalmente as superfícies aletadas com água limpa e uma mangueira de jardim de baixa velocidade, tendo o cuidado para não dobrar as aletas.
- 4. Misture o produto de limpeza de serpentina ecológico Totaline em um aspersor de jardim de 9,5 litros (2,5 galões) de acordo com as instruções inclusas no produto de limpeza. A temperatura ideal da solução é de 37,8°C (100°F).

♠ OBSERVAÇÃO

NÃO USE água a mais de 130°F (54.4°C), para não destruir a atividade enzimática.

 Aplique a solução limpadora de serpentina ecológica Totaline em todas as superfícies da serpentina, incluindo a área aletada, chapas laterais e coletores de serpentina.

- Segure o bico aspersor próximo das áreas aletadas e aplique o produto de limpeza com movimento vertical, para cima e para baixo. Evite borrifar horizontalmente para minimizar danos em potencial às aletas.
- 7. Verifique se o produto de limpeza penetra bem profundamente em áreas com aletas.
- 8. Áreas internas e externas com aletas devem ser completamente limpas.
- 9. As superfícies aletadas devem permanecer úmidas com a solução de limpeza por 10 minutos.
- 10. Certifique-se de que as superfícies não sequem antes de enxaguar. Aplique novamente o produto de limpeza conforme a necessidade para garantir que a saturação no período 10 minutos seja atingida.
- 11. Enxágue totalmente todas as superfícies com água limpa em baixa velocidade fazendo uso do bico aspersor de água com movimento de enxágue descendente. Proteja as aletas contra danos provocados pelo bico aspersor.

Tabela 21 - Recomendações para Lavagem da Serpentina

Tipo de Serpentina	Tipo de Lavadora	Pressão Máxima de Trabalho	Distância Mínima Recomendada
Gold Fin	Doméstica	45 psig (3 Bar)	305 mm

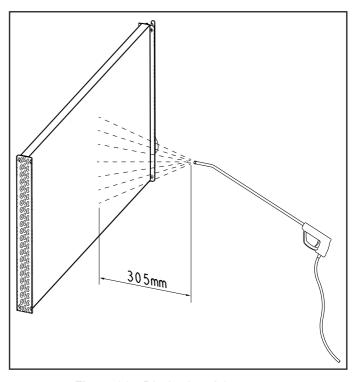


Figura 32 - Distância mínima spray

Ventiladores do Condensador

Um suporte metálico estampado e parafusado nos apoios da plataforma do ventilador suporta cada conjunto de ventilador e motor. Um anteparo e uma grade de arame fornecem proteção contra o giro da hélice. Veja a Figura 38. A extremidade exposta do eixo do motor do ventilador é protegida contra intempéries com graxa. Se o motor precisa ser removido para reparo ou substituição, certifique-se de engraxar novamente o eixo do ventilador e reinstalar a proteção do ventilador. O motor do ventilador possui um ressalto no eixo do motor. Para o desempenho adequado, a hélice deverá estar posicionada de tal forma que fique seguramente assentada neste ressalto. Aperte o parafuso com torque de 20,34 Nm + 2,7 Nm (15 ft lb + 2,0). As sequências de operação dos ventiladores são apresentadas nas figuras a seguir. Consulte também a tabela na sequência para ver a capacidade nominal do compressor.

		CIRCUITO					
	30XS 100 / 110 / 120	А	Ventilador estágio A	1	2	3	4
COMP B COMP A			Contator #	KM1A	KM2A		
(FM1) (FM3) (11/05)			Posição do ventilador	FM3	FM4		
THE TOTAL TO			Ventilador estágio B	1	2	3	4
11/24		В	Contator #	KM1B	KM2B		
			Posição do ventilador	FM1	FM2		
			Ventilador estágio A	1	2	3	4
COMP B COMP A		А	Contator #	KM1A	KM2A	KM3A	
FM1 (13/05) (FM5) (11/07)	30XS 140		Posição do ventilador	FM5	FM3	FM4	
THE	3085 140		Ventilador estágio B	1	2	3	4
13/09) (11/15)		В	Contator #	KM1B	KM2B		
			Posição do ventilador	FM1	FM2		
			Ventilador estágio A	1	2	3	4
COMP B COMP A	30XS 160	В	Contator #	KM1A	KM2A	KM3A	KM4A
FM1 13/06 FM3 11/10 FM5 11/06			Posição do ventilador	FM5	FM3	FM6	FM4
13/06 11/70 11/06 11/70 11/06 11/70 11/06 11/70			Ventilador estágio B	1	2	3	4
13/10 (11/23) (11/20)			Contator #	KM1B	KM2B		
			Posição do ventilador	FM1	FM2		
		A	Ventilador estágio A	1	2	3	4
COMP B COMP A			Contator #	KM1A	KM2A	КМЗА	
₹ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30XS 180		Posição do ventilador	FM5	FM6	FM4	
13/08 13/12 11/09 13/12 11/09 (FMG 13/16 11/15 FMG 11/12 11/	30/23 100		Ventilador estágio B	1	2	3	4
13/16/ 11/15/ 11/12/			Contator #	KM1B	KM2B	КМ3В	
			Posição do ventilador	FM1	FM3	FM2	
			Ventilador estágio A	1	2	3	4
COMP B COMP A		A	Contator #	KM1A	KM2A	КМЗА	KM4A
FM2 FM4 FM6 FM8 FM7 FM8 FM9	30XS 200 /		Posição do ventilador	FM7	FM5	FM8	FM6
	220 / 240		Ventilador estágio B	1	2	3	4
		В	Contator #	KM1B	KM2B	КМЗВ	KM4B
			Posição do ventilador	FM1	FM3	FM2	FM4

Figura 33 - Estágios do Ventilador

Contaminantes das Serpentinas

Alguns contaminantes do ambiente podem ocasionar severa corrosão do cobre e consequente vazamento de refrigerante. Uma das maneiras de identificar que existe contaminante no ambiente é através da coloração do tubo de cobre. A tabela a seguir indica alguns contaminantes industriais.

Tabela 22 - Contamimantes

Contaminante	Símbolos Químicos	Tipo de Indústria/Aplicação Fontes de Contaminantes		Cor Potencial de Corrosão (no cobre)*
Óxidos de Enxofre	SO ₂ /SO ₃	Plantas de Polpa, Papel & Madeira Instalações de Incineração	Emissões de	
Óxidos de Nitrogênio	NO _x	Geração de Energia por Queima de Combustível Operação com Motores Diesel/ Gasolina	processo Produto de combustão	Preta / Azul
Cloro & Cloretos	Cl ₂ / Cl _x	 Processamento de Agente de Limpeza Instalações para Tratamento de Águas Mineração e Processamento de Sal Agentes de Piscinas 	Emissões de processo Desinfecção de água Subprodutos do processo	Amarronzada Amarela (Não hidratada) Verde (hidratada)
Amônia & Sais de Amônia	Sais de NH ₃ / NH ₄ • Instalações de Tratamento de Águas		Emissões de processo Subprodutos do processo Digestão residual Resíduos de animais & Fertilizantes	Preta
Sulfeto de Hidrogênio	H ₄ S	Instalações de Tratamento de Águas Residuais	Processo de lama [ou sedimentos]	Preta

^{*} A descoloração é uma indicação de problemas potenciais. Entretanto, a indicação de fontes de contaminação baseada na cor pode ser equivocada.

⚠ IMPORTANTE

A Carrier recomenda o tratamento do tubo de cobre, através de limpeza e aplicação de verniz, em caso de identificação das situações e colorações descritas na tabela acima.

A não observância destas recomendações implicará em perda da garantia do equipamento.

Circuito de Refrigerante

Teste de Vazamento

As unidades 30XS são embarcadas com uma carga completa de operação de refrigerante R-134a (veja as Tabelas de Dados Físicos) e deve estar sob pressão suficiente para realizar um teste de vazamento. Se não houver pressão no sistema, introduza nitrogênio o suficiente para localizar o vazamento. Repare o vazamento usando as boas práticas de refrigeração.

Depois que os vazamentos forem reparados, o sistema deve ser evacuado e desidratado.

Carga de Refrigerante

Consulte as Tabelas de Dados Físicos. Imediatamente à frente do filtro secador em cada circuito há uma válvula de serviço da linha de líquido instalada em fábrica. Cada válvula possui uma conexão de acesso de 6,35 mm (¼ in.) para a carga do refrigerante líquido.

Carga com a unidade desligada e evacuada – Feche a válvula de serviço da linha de líquido antes da carga. O valor da carga é indicado na plaqueta de identificação da unidade. Abra a válvula de serviço da linha de líquido; dê partida na unidade e deixe-a funcionando por vários minutos à plena carga. Verifique se o Visor está limpo. Certifique-se de que a condição limpa é de líquido e não de vapor.

Carga com a Unidade Funcionando

Se a carga deve ser adicionada com a unidade em funcionamento, todos os ventiladores do condensador e compressores devem estar operando. É possível que seja necessário bloquear as serpentinas do condensador em baixas temperaturas ambientes para aumentar a pressão de condensação para aproximadamente 1365 kPa (198 psig) de modo a ligar todos os ventiladores do condensador. Entretanto, não bloqueie totalmente uma serpentina para efetuar esta operação. De forma parcial, bloqueie todas as serpentinas de modo uniforme. Carregue cada circuito até o visor mostrar claramente o refrigerante na forma líquida, com uma temperatura de linha de líquido de 39°C (103°F).

Adicione 1,36 a 2,27 kg (3 a 5 libras), dependendo do tamanho da unidade, uma carga líquida na válvula localizada no tubo de entrada do evaporador (cooler) no evaporador. Esta válvula está localizada entre a válvula de expansão eletrônica (EXV) e o evaporador.

Permita que o sistema se estabilize e, em seguida, verifique novamente a temperatura do líquido. Se necessário, acrescente uma carga adicional de líquido, 2,3 kg (3 a 5 lb), permitindo que o sistema se estabilize entre cada acréscimo de carga. Adicione carga lentamente à medida que o Visor começa a ficar limpo, para evitar uma sobrecarga.

Ao ajustar a carga de refrigerante, circule fluido continuamente pelo evaporador para evitar congelamento e possível dano ao evaporador. Não carregue em excesso e nunca carregue líquido para o interior do sistema no lado de baixa pressão.

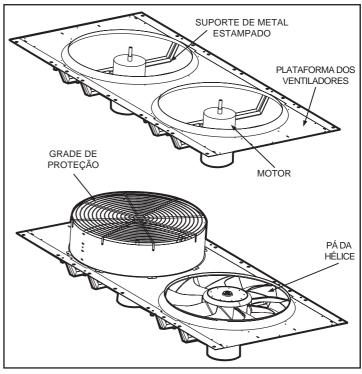


Figura 34 - Conjunto do ventilador

Dispositivos de segurança

Os chillers 30XS contêm muitos dispositivos de segurança e de lógica de proteção incorporados ao controle eletrônico. Segue uma descrição dos principais dispositivos de segurança.

Proteção do Compressor

Sobrecarga do Motor

Os módulos de proteção do compressor (CPM) protegem cada compressor contra sobrecorrente. Não "jampeie" (bypass) transdutores de corrente ou faça qualquer alteração nos dispositivos instalados e configurados em fábrica. A configuração desses dispositivos define a Corrente de Desarme (MTA) na qual o CPM irá desligar os compressores. Determine a causa do problema e corrija antes de 'resetar' o CPM. Consulte o Apêndice D para obter as configurações do MTA e dos DIP SWITCH.

Cada placa CPM também lê o status de cada pressostato de alta do compressor. Todos os compressores têm pressostatos instalados em fábrica. Veja a tabela abaixo.

Tabela 23 - Configurações dos Pressostatos de Alta

Unidades	Configuração do	Pressostato
Unidades	psig	kPa
30XS	304,5 +7,25; -14,5	2099 +50; -100

Se o pressostato abrir durante a operação, o compressor será desligado. O CPM irá 'resetar' automaticamente quando o pressostato fechar. No entanto, um 'reset' manual do controle é necessário para partir o compressor.

Aquecedores do Separador de Óleo

Cada circuito do separador de óleo tem um aquecedor montado na parte inferior do vaso. O aquecedor é desligado sempre que o compressor estiver ligado. Se o compressor estiver desligado e a temperatura externa do ar (OAT) for maior que 37,8°C (100°F) o aquecedor é desligado. O aquecedor também será desligado se OAT – SST > 17,8°C (32°F).

- SST: temperatura de sucção saturada
- LWT: temperatura de saída de água

Proteção do Evaporador

Baixa Temperatura da Água

O microprocessador é programado para desligar o chiller se a temperatura de saída do fluido estiver abaixo de 1,1°C (34°F) para água ou mais de 4,4°C (8°F) abaixo do ponto de ajuste (set point) para o Tipo de Fluido = brine (salmoura). Quando a temperatura do fluido sobe 3,3°C (6°F) acima do ponto de ajuste de saída do fluido, a segurança é 'resetada' e o chiller dá nova partida. O 'reset' é automático, desde que esta seja a primeira ocorrência do dia.

Dispositivos de Alívio/Segurança

⚠ IMPORTANTE

Se a unidade estiver instalada em uma área onde a temperatura ambiente está abaixo de 32°F (0°C), uma solução anticongelante e anti-corrosão de uma resistência de aquecimento na carcaça do evaporador adequada deverá ser utilizada no circuito de água gelada.

Plugues fusíveis estão localizados em cada circuito entre o condensador e a válvula de serviço da linha de líquido.

Válvulas de Alívio de Pressão (Válvulas de segurança)

As válvulas são instaladas em cada circuito e estão localizadas em todos os evaporadores e condensadores. Estas válvulas são projetadas para liberar a pressão se uma condição anormal ocorrer. As válvulas de alívio em todos os evaporadores liberam a pressão a 1517 kPa (220 psi). As válvulas de alívio em todos os separadores liberam a pressão a 2413 kPa (350 psi). Estas válvulas não devem ser tampadas. Se uma válvula liberar a pressão, ela deverá ser substituída. Se isso não for feito, ela poderá liberar à uma pressão mais baixa, ou apresentar vazamento devido a sujeira presa no sistema, o que pode impedir uma nova vedação.

Veja a tabela abaixo. Algumas normas de fabricação locais podem exigir que os gases liberados sejam canalizados para um local específico. Esta conexão permite conformidade com este requisito.

Tabela 24 - Especific. da Conexão das Válvulas de Alívio

Localização	Tamanho da Conexão
Separador de Óleo	3/8 in. SAE Flare
Opção de Evaporador Inundado	3/4 in. Fêmea NPT

8. Manutenção

Programação de Manutenção Recomendada

As únicas diretrizes recomendadas são mostradas a seguir. As condições da instalação podem ditar que a programação de manutenção seja realizada com maior frequência do que a recomendada.

Todos os meses:

- Verifique se há detritos nas serpentinas do condensador; limpe se necessário com produto de limpeza aprovado pela Carrier.
- Verifique no visor indicativo de umidade uma eventual perda de refrigerante e a presença de umidade.

A cada 3 meses:

- Verifique a carga de refrigerante.
- Verifique eventuais vazamentos em todas as juntas e válvulas de refrigerante; repare, se necessário.
- Verifique a operação da chave de fluxo de água gelada e bomba de água gelada.
- Verifique a operação adequada de todos os ventiladores do condensador.
- Verifique a queda de pressão no filtro de óleo.
- Verifique a operação do aquecedor do separador de óleo.
- Inspecione a vedação da bomba de água gelada kit bomba.

A cada 12 meses:

- Verifique todas as conexões elétricas; aperte, se necessário.
- Inspecione todos os contatores e relés; substitua se necessário.

- Verifique a precisão dos termistores; substitua se superior a ± 1,2°C (2°F) de variação em relação a um termômetro calibrado.
- Verifique a precisão dos transdutores; substitua se for maior que ± 34,47 kPa (5 psi) de variação.
- Certifique-se que a concentração adequada de anticongelante está presente no circuito de água gelada, se aplicável.
- Verifique se o circuito de água gelada está tratado adequadamente.
- Verifique os filtros secadores de refrigerante em termos de queda de pressão excessiva; e substitua se necessário.
- Verifique os filtros da água gelada, e limpe, se necessário.
- Verifique a condição das pás do ventilador do condensador e se elas estão seguramente presas ao eixo do motor.
- Execute Teste de Serviço (service test) para confirmar a operação de todos os componentes.
- Verifique se há um "approach" aproximação excessiva do evaporador (Temperatura de saída de Água gelada – Temperatura de Sucção Saturada), que pode indicar incrustação. Limpe a carcaça do evaporador, se necessário.
- Providencie a análise do óleo; troque, se necessário.

9. Teste de Serviço (Service Test)

A alimentação da rede elétrica e do circuito de controle devem estar ligadas para o Teste de Serviço.

A função de Teste de Serviço é utilizada para verificar o funcionamento apropriado de vários dispositivos dentro do chiller, como ventiladores do condensador, válvulas solenoides de carga mínima (se instaladas), bomba (s) do evaporador e relé de alarme remoto. Ela é útil durante o processo de partida para determinar se os dispositivos estão instalados corretamente. Veja a tabela abaixo para obter o código do esquema de fiação correspondente a cada modelo 30XS.

Para usar o modo Teste de Serviço, a chave Habilitar / Desligar / Contato Remoto deverá estar na posição Desligar (OFF). Use as teclas do visor para se mover para o modo Teste de Serviço (Service Test). Os itens são descritos na tabela de Teste de Serviço.Há dois submodos disponíveis. Service Test Enable, T.REQ permite o controle manual dos compressores e o controle de carga mínima. Neste modo os compressores só irão funcionar sob comando.

Os algoritmos de controle de capacidade e controle da pressão de alta estarão ativos. Os ventiladores do condensador funcionarão em conjunto com as EXVs. Deve haver uma carga no chiller para operar por um período prolongado de tempo. Todas as seguranças de circuito serão mantidas durante o teste. Quick Test Enable, Q.REQ permite teste das EXVs, ventiladores do condensador, bombas, controle da velocidade em baixa temperatura ambiente, separador de óleo, aquecedores do evaporador, solenoides de óleo, descarregamento das solenoides e pontos de status (relés de alarme, status de funcionamento e capacidade do chiller). Se nenhuma tecla for pressionada por 5 minutos, o modo de teste ativo será desabilitado.

Para entrar no modo Quick Test, a chave Habilitar / Desligar / Contato Remoto deve estar na posição Desligar (OFF).

10. Diagramas Elétricos e Listas de Alarmes

Os diagramas elétricos com os circuitos de alimentação, comando e controle, diagramas de válvulas, opcionais e conexões, além das listas de alarmes são enviados juntamente com cada modelo de máquina conforme a tabela abaixo:

Tabela 25 - Diagramas elétricos e Listas de alarmes

DIAGRAMAS ELÉTRICOS E LISTA DE ALARMES			
30XS	Código do Manual		
30XS100 / 30XS110 / 30XS120	11794242		
30XS140	11794243		
30XS160	11794244		
30XS180	11794247		
30XS200	11794245		
30XS220 / 30XS240	11794246		

11. Carta de Seleção de Adaptadores Flange/Solda para Conexões Victaulic

Tabela 26 - Adaptadores Flange/Solda para Victaulic

		Adaptador Victaulic/S	Adaptador Flange/Vic	aulic	
Diâmetro	Modelo	Código	Qtde.	Código	Qtde.
5"	30XS100 a 30XS160	00EFC100100079A	1	00EFC100100075A	1
6"	30XS180 a 30XS240	00EFC100100080A	1	00EFC100100076A	1

NOTA

Os códigos dos adaptadores Victaulic/Solda e Flange/Victaulic estão disponíveis no programa de seleção E-Cat LAO.

12. Módulo de Gerenciamento de Energia

Part Number (Nº da peça): 00EFC05992030

GENERALIDADES

O software de controle ComfortLink™ padrão fornecido em todos os resfriadores 30XS está programado para aceitar várias opções de redefinição de temperatura de acessórios que redefinirem a temperatura da água gelada de saída (LCWT, leaving chilled water temperature). É necessário quadro módulo de gerenciamento de energia (EMM, energy management module) para o controle do limite da demanda de 2 etapas ou de 4 a 20 mA. A redefinição da temperatura da água gelada (pelo Delta T da água de retorno) e a redefinição da temperatura externa do ar NÃO exigem o acréscimo deste acessório.

As seguintes funções estão disponíveis com o quadro EMM:

- Ponto de ajuste da temperatura de 4 a 20 mA permite a determinação em campo do ponto de ajuste da água gelada de um sinal de 4 a 20 mA.
- Redefinição da temperatura da água gelada redefine o ponto de ajuste de água gelada sob condições inferiores à capacidade da carga completa pelos seguintes métodos:
 - Entrada de 4 a 20 mA: Fornecida em campo.
 - Temperatura Ambiente: É necessário um sensor da temperatura ambiente fornecido em campo.
- Limite da Demanda limita a capacidade da máquina, a partir da capacidade da unidade ou da corrente do compressor (30XS) pelos seguintes métodos:
 - Entrada de 4 a 20 mA: Fornecida em campo.
 - Controle do comutador de 2 etapas: É necessário um comutador de contato seco fornecido em campo (O limite de demanda em uma etapa não requer o EMM).
- Limite de Ocupação amplia o período ocupado para operação da máquina. É necessário um comutador de contato seco fornecido em campo.
- Bloqueio Remoto do Chiller desabilita o chiller quando fechado. É necessário um comutador de contato seco fornecido em campo.
- Comutador de controle de gelo produzido sinaliza a máquina para sair do modo Ice Build (produção de gelo) e entra em um período de tempo ocioso. É necessário um comutador de contato seco fornecido em campo.

As seguintes funções do status estão disponíveis com o EMM:

- Sinal de saída da capacidade sinal de saída analógica de 0 a10 Vcc indicando que a capacidade do chiller está disponível.
- Relé de status de desligamento um sinal de saída 24 Vca para indicação que a máquina está sendo desligada.
- Relé de status de funcionamento um sinal de saída 24 Vca para indicação de que a máquina está ligada e produzindo água gelada.

A placa EMM pode ser configurada com o módulo Touch Pilot™ ou NGA em unidades 30XS. Os nomes de ponto e nomes de caminho neste document em negrito são para uso no visor do Touch Pilot.

Tabela 27 - Utilização do pacote de acessórios

DESCRIÇÃO	NÚMERO DA PEÇA	QTD.
Placa PD-NRCP2 ProDialog JR.	79037142	1
Conjunto rede elétrica placa EMM	00PSC05998420	1
Borneira ligação Starfire opção EMM	42731249	1
Espaçador de placas M4x50	32997004	4

INSTALAÇÃO

Unidades 30XS

- Remova os 4 parafusos superiores da placa principal (AI).
- 2. Instale os 4 espaçadores na posição onde estavam os parafusos.
- 3. Posicione a placa EMM e parafuse com os 4 parafusos retirados da placa principal (AI).
- 4. Conecte a fiação conforme o diagrama da figura 35.
- 5. Monte a borneira conforme o layout da figura 36.

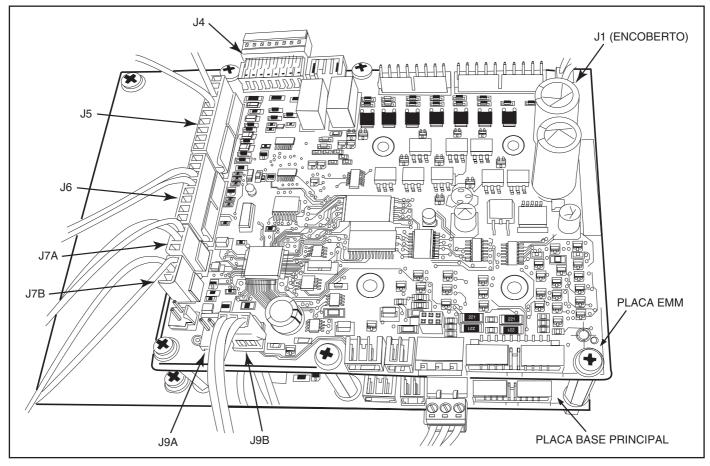


Figura 35 - EMM Montado Sobre o Quadro Base Principal

CONFIGURAÇÃO (TODOS OS TAMANHOS)

Para habilitar o quadro EMM com o visor Touch Pilot, pressione o botão Main Menu III na linha inferior do visor, e em seguida, selecione Service → Factory para navegar na tabela de fábrica. Role para baixo na tela pressionando o botão Scroll Down Jou o botão Page Down até que seja exibido Energy Management Module (módulo de gerenciamento de energia) na tela. Pressione o botão Energy Management Module para exibição do menu Point Data. Pressione o botão Modify . Se for exibido o menu de login, efetue o login com a senha. A senha padrão é 3333. Pressione o botão OK para confirmar a entrada. Será exibido o valor de emm nrcp. Selecione Yes e pressione o botão OK para confirmar a entrada. Pressione o botão Home 🚰 na linha inferior. Será exibido um menu de confirmação de salvamento. Pressione o botão OK para confirmar a ação.

Redefinição da Temperatura

4 a 20 mA — Um sinal gerado e fornecido em campo, externamente energizado de 4 a 20 mA pode ser utilizado para fornecer redefinição da temperatura do fluido de saída. O sinal deve ser conectado ao X156 71,72 (positivo, negativo). Esta é uma função linear simples que requer apenas quatro alterações da configuração. Siga o exemplo na Tabela 22 para habilitar a função

e configurar a temperatura de redefinição e valores de redefinição para um redefinição de 4,4°C (8°F) em um sinal total de 20 mA.

A configuração está completa agora. Neste exemplo, se o ponto de ajuste de refrigeração (CSP1, CSP.1) é definido como 6,7°C (44°F), o controle redefinirá de forma linear o ponto de controle (CTRL_PNT, CTPT) com base no sinal 4 a 20 mA. Não haverá redefinição para um sinal de 4 mA. Se o sinal de redefinição era de 20 mA, o CTRL_PNT ou CTPT seria alterado para 11,1°C (52°F). Da mesma forma, um sinal de redefinição de 12 mA iria redefinir CTRL_PNT ou CTPT como 8,9°C (48°F).

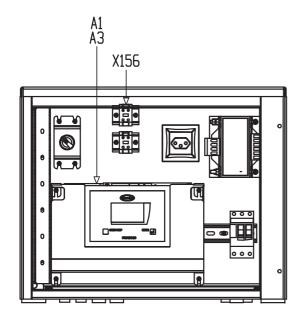
O sinal de redefinição real de 4 a 20 mA visto pelo controle pode ser visualizado do visor Touch Pilot, acesse Main Menu—>STATUS—>STATEGEN—> Reset/Setpnt 4-20mA sgnl.

TEMPERATURA AMBIENTE

Pode ser usado um termistor de 10 K fornecido em campo para prover a redefinição da temperatura do líquido de saída. O termistor deve ser conectado ao X156 71A,72A. Veja a Figura 36. Esta é uma função linear simples que requer apenas quatro alterações de configuração. Siga o exemplo da Tabela 23 para habilitar a função e configurar a temperatura de redefinição e valores de redefinição para um redefinição de -12,2°C (10°F) em uma temperatura ambiente condicionada de 15,6°C (60°F) e nenhum redefinição a 23,9°C (75°F).

12. Módulo de Gerenciamento de Energia (cont.)

Part Number (Nº da peça): 00EFC05992030


Neste exemplo, se o ponto de ajuste de refrigeração (CSP1, CSP.1) é definido como 6,7°C (44°F), o controle reajustará de forma linear o ponto de controle (CTRL_ PNT, CTPT) com base na temperatura ambiente. Não haverá redefinição para temperaturas em ou acima de 23,9°C (75°F). Se a temperatura espacial fosse de 15,6°C (60°F) ou menos, o CTRL PNT ou CTPT seria alterado para 12,2°C (54°F). Da mesma forma, uma temperatura espacial de 19,7°C (67,5°F) redefiniria CTRL_PNT ou CTPT como 9,4°C (49°F). A temperatura ambiente real vista pelo controle pode ser visualizada utilizando o visor do Touch Pilot, acesse Main Menu->STATUS-> **STATEGEN**—>Optional Space Temp.

TEMPERATURA EXTERNA DO AR, RETORNO OU **DELTA T**

Termistores instalados de fábrica são padrões para todas as unidades 30XS, que irão permitir o redefinição da temperatura de saída de água pela temperatura do ar externo, de retorno de água ou refrigerador delta T. Nenhum sensor adicional instalado em campo é necessário. Estas são funções lineares simples que requerem apenas quatro alterações de configuração. Consulte Manual de Serviço para informações de configuração.

LOCALIZAÇÃO DOS COMPONENTES NA CAIXA ELÉTRICA ELECTRICAL BOX PARTS LOCATION

LOCALIZACIÓN DE LOS COMPONENTES EN LA CAJA ELÉCTRICA

LEGENDA:

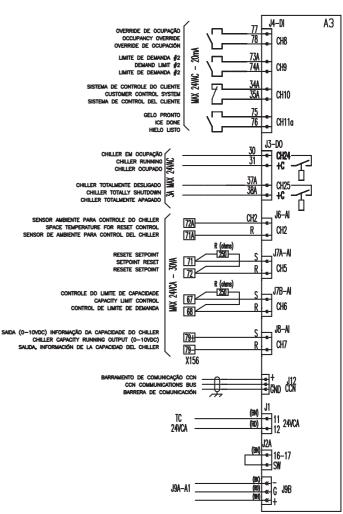
A1- PLACA DE CONTROLE PRINCIPAL BASIC BOARD

A3- PLACA EMM

LEGEND:

A1- MICROPROCESSOR-BASED MASTER MODULE A3- MODULE EMM

LEYENDA:


A1- TARJETA DE CONTROL PRINCIPAL BASIC BOARD

A3- TARJETA EMM

Figura 36 -Lay Out dos Componentes

KIT GERENCIAMENTO DE ENERGIA ENERGY MANAGEMENT KIT KIT DE GERENCIA DE ENERGIA

DIAGRAMA ELÉTRICO WIRING DIAGRAM DIAGRAMA ELÉCTRICO

LEGENDA:

A1- PLACA DE CONTROLE PRINCIPAL BASIC BOARD A3- PLACA EMM

LEGEND:

A1- MICROPROCESSOR-BASED MASTER MODULE A3- MODULE EMM

LEYENDA:

A1- TARJETA DE CONTROL PRINCIPAL A3- TARJETA EMM

Figura 37 - Fiação do EMM

68

Limite de Demanda

4 a 20 mA — Um sinal gerado e fornecido em campo, externamente energizado de 4 a 20 mA pode ser utilizado para fornecer sinal de limite de demanda para redução da capacidade. O sinal deve ser conectado ao X156 66,67 (positivo, negativo). Veja a Figura 37. Esta é uma função linear simples que requer apenas quatro alterações de configuração. Siga o exemplo da Tabela 24 para habilitar a função e configurar o limite de capacidade. Os valores de 4 a 20 mA devem ser inseridos para redução da capacidade de 0% e 100%.

Neste exemplo, se o controle recebe um sinal de 12 mA, a capacidade do chiller ficará limitada a 50%. Não haverá Limite de Demanda para um Sinal de 4 mA. Se o sinal de redefinição fosse 20 mA, o chiller seria interrompido e deixado em um modo pronto para o funcionamento.

O sinal de redefinição real de 4 a 20 mA visto pelo controle pode ser visualizado do visor Touch Pilot, acesse Main Menu—>STATUS—>STATEGEN—> Limit 4-20 mA signal.

Tabela 22 - Configuração do menu de Temperature Reset de 4 a 20 mA; visor Touch Pilot

NOME NO VISOR	CAMINHO	VALOR
Seleção da Redefinição de Refrigeração	MAIN MENU → CONFIG → USER → COOLING RESET SELECT	3.0
Valor de Redefinição da Corrente	MAIN MENU -> SETPOINT -> CURRENT NO RESET VALUE	4.0
Valor de Redefinição Total da Corrente	MAIN MENU -> SETPOINT -> CURRENT NO RESET VALUE	20.0
Cooling Reset Deg. Value	MAIN MENU -> SETPOINT -> COOLING RESET DEG. VALUE	8.0

Tabela 23 - Configuração do menu de Temperature Reset Ambiente

NOME NO VISOR	CAMINHO	VALOR
Seleção da Redefinição de Refrigeração	MAIN MENU → CONFIG → USER → COOLING RESET SELECT	4.0
Space T No Reset Value	MAIN MENU -> SETPOINT -> CURRENT NO RESET VALUE	60.0
Space T Full Reset Value	MAIN MENU → SETPOINT → CURRENT NO RESET VALUE	75.0
Cooling Reset Deg. Value	MAIN MENU → SETPOINT → COOLING RESET DEG. VALUE	10.0

Tabela 24 - Configuração do menu de Limite de Demanda de 4 a 20 mA; visor Touch Pilot

NOME NO VISOR	CAMINHO	VALOR
Seleção do Tipo de Limite de Demanda	MAIN MENU → CONFIG → USER → DEMAND LIMIT TYPE SELECT	2.0
mA para limite de demanda de 100%	MAIN MENU → CONFIG → USER → mA FOR 100% DEMAND LIMIT	20.0
mA para limite de demanda de 0%	MAIN MENU → CONFIG → USER → DEMAND LIMIT TYPE SELECT	4.0

CONTROLADO POR COMUTADOR

Um conjunto fornecido em campo dos contatos secos pode ser utilizado para fornecer até três etapas de limite de demanda do chiller. As três etapas são alcançadas através de duas definições de contatos secos.

Os contatos para a etapa 1 devem ser conectadas a placa principal bornes 63, 64. Os contatos para a etapa 2 devem ser conectados aos bornes 73A, 74A da placa EMM. Veja a Figura 37. A posição destes contatos irá permitir até três etapas do limite de demanda de acordo com o seguinte:

	QUANTIDADE DE LIMITE DE DEMANDA			
CONTATO	Nenhum	Ponto de ajuste 1 Limite do comutador	Ponto de ajuste 2 Limite do comutador	Ponto de ajuste 3 Limite do comutador
Comutador 1	Abrir	Fechar	Abrir	Fechar
Comutador 2	Abrir	Abrir	Fechar	Fechar

Siga o exemplo da Tabela 25 para habilitar a função e configurar a etapa de limite de demanda para o limite de capacidade de 80%, 60% e 25% com base na posição do comutador descrito acima.

Neste exemplo, quando o comutador 1 é fechado e o comutador 2 é aberto, a capacidade máxima do chiller será reduzida para 80%. Quando o comutador 1 é aberto e o comutador 2 é fechado, a capacidade máxima do chiller será reduzida para 60%. Da mesma forma, quando ambos os comutadores são fechados, a capacidade máxima do chiller será reduzida para 25%.

As posições reais dos comutadores 1 e 2 vistas pelo controle podem ser visualizadas do visor Touch Pilot, acesse Main Menu -> STATUS -> STATEGEN -> Limit Switch 1 status or Limit Switch 2 status.

12. Módulo de Gerenciamento de Energia (cont.)

Part Number (Nº da peça): 00EFC05992030

Tabela 25 - Configuração do menu de Limite de Demanda controlado por comutador, visor do Touch Pilot

NOME NO VISOR	CAMINHO	VALOR
Seleção do Tipo de Limite de Demanda	MAIN MENU → CONFIG → USER → DEMAND LIMIT TYPE SELECT	1
Ponto de ajuste 1 do limite do comutador	MAIN MENU -> SETPOINT -> SWITCH LIMIT SETPOINT 1	80
Ponto de ajuste 2 do limite do comutador	MAIN MENU → SETPOINT → SWITCH LIMIT SETPOINT 2	60
Ponto de ajuste 3 do limite do comutador	MAIN MENU → SETPOINT → SWITCH LIMIT SETPOINT 3	25

Funções EMM Adicionais

ENTRADAS — Um conjunto fornecido em campo de contatos secos pode ser utilizado para fornecer um sinal de limite da ocupação (bornes 77, 78), bloqueio remoto do chiller (bornes 34A, 35A) ou sinal de gelo feito (bornes 75, 76) para os controles. Veja a Figura 37. O comutador de limite de ocupação pode ser utilizado para colocar o chiller em um modo ocupado durante um modo de operação desocupado programado normalmente. A função de boqueio do chiller remoto desabilitará o chiller quando fechado. Com a configuração do modo de gelo habilitada e este contato aberto, um chiller de salmoura será capaz de operar como desejado durante tempos fora de pico em conjunção com um sistema de armazenamento de gelo. A operação nas extremidades do modo de gelo termina quando os contatos fecham. Consulte o Manual de Controles, para mais informações sobre a correta configuração destas opções.

SAÍDAS — Uma saída analógica e duas discretas estão disponíveis a partir do EMM. Uma saída analógica de 0 a 10 Vcc está disponível para indicar de forma linear o funcionamento da capacidade do chiller total atual. Conexão para este sinal de saída é feito com dois fios do plugue J8. Há também saídas 24 Vca discretas disponíveis a partir do plugue J3. Veja a Figura 37. A saída do relé de desligamento é ligada se o chiller estiver completamente desligado. A saída do relé de funcionamento é ligada se a capacidade do chiller for maior do que 0%. Todas as três dessas saídas são para auxiliar o monitoramento remoto da operação do chiller.

ANOTAÇÕES

ANOTAÇÕES

A critério da fábrica, e tendo em vista o aperfeiçoamento do produto, as características daqui constantes poderão ser alteradas a qualquer momento sem aviso prévio.

Telefones para Contato: 4003.9666 - Capitais e Regiões Metropolitanas **0800.886.9666** - Demais Cidades

ISO 9001 ISO 14001 OHSAS 18001