

Manual de Projeto Unidades Centrais

APRESENTAÇÃO

A Midea Carrier tem o prazer de lhes apresentar o Sistema Central VRF Midea série Mini V6 Dura, um sistema de expansão direta com condensação a ar do tipo quente-ou-frio (heat pump), disponível em unidades centrais individuais de 2,8 a 7,0HP (6.880 a 16.770 frigorías por hora), disponível na tensão 220V, 60Hz.

A linha Midea V6 apresenta 13 tipos de unidades terminais, derivando-se em mais de 100 modelos, considerando suas diferentes capacidades. Um sistema é composto por uma unidade central e por unidades terminais interligadas entre si através de tubulação frigorígena. O requisito mínimo para um sistema operar de forma estável é que seja composto por pelo menos 20% da capacidade de cada unidade central em unidades terminais.

Uma ou mais unidades terminais podem atender um ou mais ambientes, como um cômodo específico quanto uma zona específica dentro de uma cômodo maior conectados por uma rede de dutos de distribuição de ar. Todas as unidades são dotadas de válvula de expansão eletrônica, e controladas pelas unidades centrais, que variando a rotação de seus compressores garantindo conforto ao usuário e menor consumo de energia. A capacidade de unidades terminais pode variar em relação às unidades centrais de um mesmo sistema, consulte a seção de proporção de combinação deste manual de projeto para referências.

Devido às suas características de compressores com velocidade variável, sistema de retorno e separação de óleo lubrificante e acumuladores de sucção, é possível empregar até 130m de comprimento de tubulações e alcançar longas distâncias e desníveis entre a unidade central e as demais unidades terminais. Estas características também permitem que a montagem do sistema seja modular, e sua implementação possa ser feita em fases, até mesmo com o sistema em funcionamento, respeitando os limites impostos pelo fabricante.

A comunicação entre as unidades terminais é feita através de linguagem exclusiva da Midea e o sistema é controlado através de algoritmos P.I. (Proporcional Integral). A comunicação entre unidades centrais e unidades terminais é feita via cabo de comunicação de duas vias. Para o gerenciamento de todos os sensores, transdutores, válvulas e circuitos de um ou mais sistemas, a Midea disponibiliza um software de gerenciamento a ser instalado no local (IHM), ou em estação computacional remota (rede ou nuvem), com capacidade para conexão de até 3.840 unidades terminais, e de até 480 sistemas no software de gerenciamento. Este software permite a extração de relatórios de uso de cada unidade e também o rateio proporcional do consumo de energia, e também permite a integração com sistemas de automação predial (iluminação, detecção e combate a incêndios, gerenciamento de elevadores, etc) através dos protocolos de comunicação Modbus™, BACnet™ e KNX™.

Todas essas características qualificam os sistemas Midea V6 como uma solução de ar condicionado central, atendendo às mais variadas demandas, como grandes prédios comerciais, museus, shopping, escolas, estádios, hospitais, podendo ser aplicado em ambientes assistenciais de saúde (NBR 7256) e empregados para tratamento de ar (NBR 16401) graças a compatibilidade com sistemas de filtragem.

ÍNDICE

Informações Gerais	
1. Capacidades das Unidade Terminais e Centrais	4
2. Aparência Externa	6
3. Nomenclatura	8
4. Proporção de Combinação	12
5. Procedimento de Seleção	13
ESPECIFICAÇÕES & PERFORMANCE - UNIDADE CENTRAIS	
1. Especificações	18
2. Dimensões	20
3. Requisitos do Espaço de Instalação	21
4. Diagramas de Tubulação	22
5. Diagramas da Fiação	25
6. Características Elétricas	28
7. Fatores de Correção de Capacidade para Comprimento da Tubulação e Desnível	29
8. Limites Operacionais	30
9. Níveis de Ruído	31
10. Acessórios	33
Projeto e Instalação do Sistema	
1. Prefácio	34
2. Posicionamento e Instalação das Unidades	34
3. Projeto da Tubulação de Refrigerante	37
4. Instalação da Tubulação de Refrigerante	45
5. Tubulação de Drenagem	56
6. Isolamento	60
7. Carregamento do Refrigerante	62
8. Instalação Elétrica	64
9. Instalação em Áreas de Alta Salinidade	68
10. Preparação	69
11. Apêndice da Seção 3 – Relatório de Preparação do Sistema	71

Informações Gerais

1. CAPACIDADES DAS UNIDADES TERMINAIS E CENTRAIS

1.1 Faixa de Capacidade das Unidades Terminais

Códigos de abreviações da unidade terminal padrão

Código	Descrição
Q1 / Q1 (A)	Cassette 1-Via / Cassette 1-Via Slim
Q2	Cassette 2-Vias
Q4C	Cassette 4-Vias (compacto)
Q4	Cassette 4-Vias
G	Hi Wall

Código	Descrição
T1	Duto de Alta Pressão Estática
T2	Duto de Média Pressão Estática
Т3	Arc Duct
DL	Piso-Teto
F	Console de Piso

Capacidades das unidade terminal padrão

	Capacidade		Capacidade	Q1	Q2	Q4C	Q4	G	T1	T2	Т3	DL	F		
kW	BTU/h	TR	HP	Fg/h	INDEX	Q1(A)	QZ.	Q40	Q.T			12	13		•
1,5	5.100	0,4	0,50	1.290	15		_	15		15	_	15	15		
1,8	6.000	0,5	0,60	1.548	18	18	_		_		_		_	_	
2,2	7.200	0,6	0,80	1.892	22	22	22	22	_	22	_	22	22	_	22
2,8	9.600	0,8	1,00	2.408	28	28	28	28	28	28	_	28	28	_	28
3,6	12.000	1,0	1,30	3.096	36	36	36	36	36	36	_	36	36	36	36
4,5	15.600	1,3	1,60	3.870	45	45	45	45	45	45		45	45	45	45
5,6	19.200	1,6	2,00	4.816	56	56	56	56	56	56	56	56	56	56	56
6,3	21.600	1,8	2,30	5.418	63	_	_	63	_	_	_	_	_	_	_
7,1	24.000	2,0	2,50	6.106	71	71	71	_	71	71	71	71	71	71	71
8,0	27.600	2,3	2,90	6.880	80	_	_	_	80	80	80	80	80	80	80
9,0	31.200	2,6	3,30	7.740	90	_	_	_	90	90	90	90	90	90	
10,0	33.600	2,8	3,50	8.600	100	_	_	_	100	_	_	_	_	100	
11,2	38.400	3,2	4,00	9.632	112	_	_	_	112	_	112	112	112	112	
12,5	42.650	3,5	4,50	10.750	125	_	_	_	_	_	125	_	_	125	
14,0	48.000	4,0	5,00	12.040	140	_	_	_	140	_	140	140	_	140	
16,0	55.200	4,6	5,80	13.760	160	_	_	_	160	_	160	160	_	160	
18,0	61.200	5,1	6,40	15.480	180	_	_	_	180	_	_	_	_	_	
20,0	68.400	5,7	7,10	17.200	200	_	_	_	_	_	200	_	_	_	_
22,4	76.800	6,4	8,0	19.264	224	_	_	_	_	_	224	_	_	_	
25,2	86.400	7,2	9,0	21.672	252	_	_	_	_	_	252	_	_	_	_
28,0	96.000	8,0	10,0	24.080	280	_	_	_	_	_	280	_	_	_	
33,5	114.000	9,5	12,0	28.810	335	_	_	_	_	_	335	_	_	_	
40,0	136.800	11,4	14,00	34.400	400	_	_	_	_	_	400	_	_	_	_
45,0	153.600	12,8	16,00	38.700	450				_	_	450	_	_	_	
56,0	190.800	15,9	20,00	48.160	560		_		_	_	560	_	_	_	

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

Capacidades das unidades de processamento de ar externo (FAS/FA)

Unidades	FAS				FAS FA								
Capacidade (kW)	9,0	14,0	16,0	22,4	28,0	20,0	22,4	25,2	28,0	33,5	40,0	45,0	56,0
Índice de capacidade	90	140	160	224	280	200	224	252	280	335	400	450	560

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

1.2 Faixa de Capacidade das Unidades Ventilador com Recuperação de Calor (HRV)

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

1.3 Faixa de Capacidade das Unidades de Terminal Dutado

Capacidades das unidades de terminal dutado - AHU Built-In Hospitalar (42BHA)

Capacidade (TR)	1,0	2,0	3,0
Capacidade (kW)	4,0	7,0	10,0
Índice de capacidade	40	70	100

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

Capacidades das unidades de terminal dutado - AHU (40MV)

Capacidade (kW)	17,5	25,2	28,0	45,0	50,0	67,0	85,0	100,0	134,0	157,0	168,0
Índice de capacidade	175	252	280	450	500	670	850	1000	1340	1570	1700

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

Capacidades das unidades de terminal dutado - AHU (40DV)

Capacidade (kW)	17,5	28,0	33,5	50,0	67,0	85,0	100,0	134,0	157,0	168,0
Índice de capacidade	175	280	335	500	670	850	1000	1340	1570	1700

NOTA:

Consultar o item "5. Proporção de Combinação" a seguir, para verificar a aplicação e a compatibilidade das unidades terminais com as unidades centrais. Algumas opções de capacidade não estão disponíveis ou não são compatíveis.

1.4. Faixa de Capacidade das Unidades Centrais

Capacidade (kW)	Nome do modelo	Capacidade (kW)	Nome do modelo
8,0	MDV-V8W/DHN1(D)	14,0	MDV-V14W/DHN1(D)
10,0	MDV-V10W/DHN1(D)	15,5	MDV-V16W/DHN1(D)
12,3	MDV-V12W/DHN1(D)	17,5	MDV-V18W/DHN1(D)

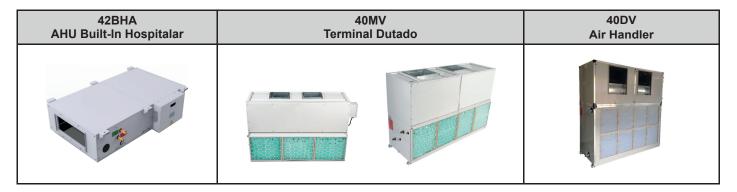
Observações:

1. Unidades centrais da série individual (Série Mini) não podem ser combinadas.

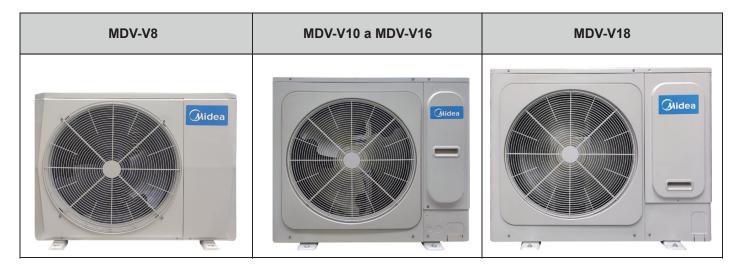
2. APARÊNCIA EXTERNA

2.1 Unidades Terminais

2.1.1 Unidade terminal padrão


2.1.2 Unidade de processamento de ar externo (FAS/FA)

FAS	FA


2.2 Ventilador com Recuperação de Calor (HRV)

2.3 Unidades de Terminal Dutado

2.3. Unidades Centrais

3. NOMENCLATURA

3.1 Unidades Terminais

3.1.1 Unidade terminal padrão

M	<u> </u>	Н	18	Q1	Н	N18	(A)
1	2	3	4	5	6	7	8

	LEGENDA					
Nº	Código	Comentários				
1	М	Midea				
2	I	Unidade Terminal VRF				
3	Н	Código de Função • <i>H: Função Hyperlink</i>				
4	18	Índice de capacidade (a capacidade	e em kW multiplicada por 10)			
5	Q1	Tipo de unidade terminal Q1: Cassette 1 Via Q1 (A): Cassette 1 Via Slim Q2: Cassette 2 Vias Q4C: Cassette 4 Vias Compacto Q4: Cassette 4 Vias	G: Hi Wall T1: Dutado de Alta Pressão Estática T2: Dutado de Média Pressão Estática T3: Arc Duct DL: Piso-Teto F: Console de Piso			
6	Н	Fonte de alimentação • <i>H:</i> Monofásico, 220-240V, 50/60Hz				
7	N18	Tipo de refrigerante • N18: R-410A				
8	(A)	Revisão de Projeto - Somente UTs Cassette 1 Via				

3.1.2 Unidade de processamento de ar externo

M	1	Н	280	FAS	Н	N18	M	1	Н	280	FA	Н	N18
1	2	3	4	5	6	7	1	2	3	4	5	6	7

	LEGENDA					
Nº	Código	Comentários				
1	М	Midea				
2	I	Unidade Terminal VRF				
3	Н	Código de Função • H: Função Hyperlink				
4	280	Índice de capacidade (a capacidade em kW multiplicada por 10)				
5	FA/FAS	Tipo de unidade terminal • FA: Unidade de processamento de ar externo • FAS: Unidade de processamento de ar externo (small airflow)				
6	Н	Fonte de alimentação • <i>H: Monofásico, 220-240V, 50/60 Hz</i>				
7	N18	Tipo de refrigerante • N18: R-410A				

3.1.3 Unidades de terminal dutado (AHU) 40DV

Módulo Trocador de Calor

Módulo de Ventilação

40 DV A 175 T V	В
-----------------	---

40 DV A 252 23 6 V V1 A M

<u>1</u> 2 3 4 5 6 7

1 2 3 4 8 9 10 11 12 13

Módulo Damper

40 DV A 175 D 01

1 2 3 4 14 15

	LEGENDA					
N°	Código	Comentários				
1	40	Unidade terminal				
2	DV	Terminal dutado VRF				
3	А	Revisão atual				
4		Índice de Capacidade • 500: 50,0 kW • 1340: 134,0 kW • 175: 17,5 kW • 670: 67,0 kW • 1570: 157,0 kW • 280: 28,0 kW • 850: 85,0 kW • 1700: 168,0 kW • 335: 33,5 kW • 1000: 100,0 kW				
5	Т	Módulo: Trocador de calor				
6	V	Posição de montagem do trocador: • V: Vertical • H: Horizontal				
7	В	Filtragem do trocador: • B: G4 1" Papelão + M5 2" • D: G4 1" Metálico + M5 2" • E: G4 1" Papelão + F8 2" • F: G4 1" Metálico + F8 2"				
8	23	Tensão nominal: 220/380V				
9	6	Frequência nominal: 60Hz				
10	V	Módulo: Ventilador				
11	V1	Posição de montagem do ventilador: • V1: Montagem vertical / Descarga vertical • V2: Montagem vertical / Descarga horizontal • H4: Montagem horizontal / Descarga horizontal • H5: Montagem horizontal / Descarga vertical				
12	А	Tipo de ventilador do ventilador: • A: Sirocco • B: Limit Load				
13	М	Filtragem do ventilador: • <i>M</i> : <i>G</i> 4 + <i>M</i> 5 • <i>F</i> : <i>G</i> 4 + <i>F</i> 8				
14	D	Módulo: Damper				
13	01	Posição de montagem do damper: • 01: Retorno superior / Ar externo esquerdo • 02: Retorno superior / Ar externo frontal • 03: Retorno superior / Ar externo direito • 04: Retorno frontal / Ar externo esquerdo • 05: Retorno frontal / Ar externo direito • 06: Retorno frontal / Ar externo superior				

3.1.4 Unidades de terminal dutado (AHU) 40MV

Módulo Trocador de Calor

Módulo de Ventilação

MV A 252 T

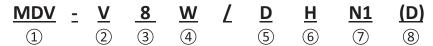
3

4 5 6

4

3

7 8 9 10


	LEGENDA						
N°	Código	Comentários					
1	40	Unidade terminal					
2	MV	Terminal dutado VRF					
3	Α	Revisão atual					
4		Índice de Capacidade • 175: 17,5 kW • 252: 25,2 kW • 280: 28,0 kW	• 450: 45,0 kW • 500: 50,0 kW • 670: 67,0 kW • 850: 85,0 kW	• 1000: 100,0 kW • 1340: 134,0 kW • 1570: 157,0 kW • 1700: 168,0 kW			
5	Т	Módulo: Trocador de calo	r				
6	V	Posição de montagem (somente capacidades 850 a 1700): • V: Vertical • H: Horizontal					
7	23	Tensão nominal: 220/380V					
8	6	Frequência nominal: 60H	Frequência nominal: 60Hz				
9	V	Módulo: Ventilador					
10	V1	Posição de montagem (somente capacidades 850 a 1700): • V1: Montagem vertical / Insuflamento vertical • V2: Montagem vertical / Insuflamento horizontal • H4: Montagem horizontal / Insuflamento horizontal • H5: Montagem horizontal / Insuflamento vertical					

3.2 Ventilador com Recuperação de Calor

Série DC

	LEGENDA						
Nº	Código	Comentários					
1	HRV	Ventilador com recuperação de calor					
2	D	Categoria de série (D: séries DC)					
3	400	Fluxo de ar em m³/h					
4	С	Série V8					

3.3. Unidades Centrais

	LEGENDA					
N°	Código	Observações				
1	MDV	Midea VRF				
2	V	All DC Inverter				
3	8	Capacidade em kW				
4	W	Unidade central VRF				
5	D	Compressor DC inverter				
6	Н	Fonte de alimentação • <i>H</i> : 220V~ 60Hz				
7	N1	Tipo de refrigerante • N1: R-410A				
8*	(D) (D)-C	Modelos com proteção Standard Modelos com proteção anticorrosão				

^{*} Todos os modelos do Mini V6 Dura também estão disponíveis como opcional em versão anticorrosão, que aumenta sua durabilidade.

Exemplo:

MDV-V8W/DHN1(D): Unidade Central Mini V6 Dura de 8kW com proteção Standard. MDV-V8W/DHN1(D)-C: Unidade Central Mini V6 Dura de 8kW com proteção anticorrosão.

4. Proporção de Combinação

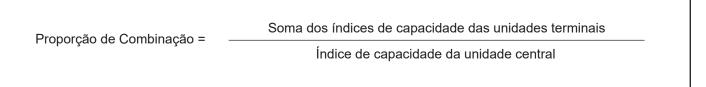


Tabela 1-4.1: Limitações da proporção de combinação das unidades terminais e centrais

Tipo	Operação mínima	Taxa de simultaneidade máxima recomendada	
про	recomendada	Apenas unidades terminais padrão	
Unidades centrais da série Mini V6 Dura	20%*	150%**	

Notas:

- * Para nível de operação das unidades centrais abaixo de 20%, favor entrar em contato com a Midea Carrier.
- ** Simultaneidades entre 130% e 150%, favor entrar em contato com a Midea Carrier para análise da aplicação do sistema, sob pena de perda da garantia.

Observações:

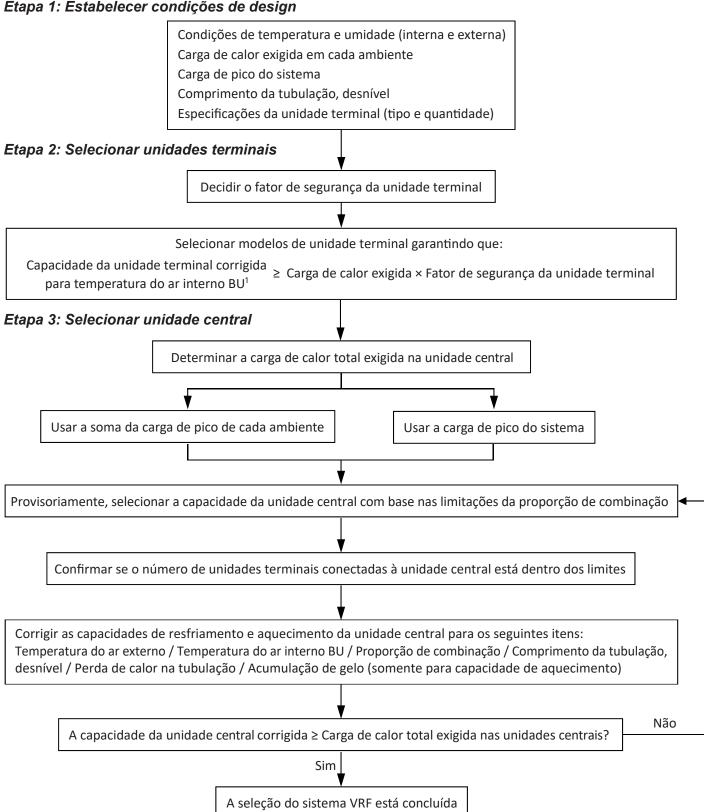
- 1. A capacidade do sistema pode variar de acordo com as condições de projeto, tais como:
 - · Comprimento de tubulação;
 - Temperaturas externa e interna;
 - Taxa de simultaneidade, etc.

Para dimensionamento da capacidade efetiva dos equipamentos, favor consultar a seção de especificações e performance neste manual de projeto ou no software de seleção MCSSP.

2. Caso a taxa de simultaneidade entre as unidades centrais e terminais esteja acima de 130%, as unidades terminais deverão operar com mínima velocidade.

Tabela 1-4.2: Combinações de unidades terminais e centrais

Capacidade da unidade central		Soma dos índices de capacidade	Número máximo de	
kW	Índice de capacidade	das unidades terminais conectadas (somente unidades terminais padrão)	unidades terminais conectadas	
8,0	80	36,0 a 104,0	4	
10,0	100	45,0 a 130,0	6	
12,3	123	55,4 a 159,9	7	
14,0	140	63,0 a 182,0	8	
15,5	155	69,8 a 201,5	9	
17,5	175	78,8 a 227,5	9	


IMPORTANTE:

 Para dados de limitações da proporção de combinação das unidades terminais AHU 40MV/40DV, unidades terminais padrão e unidades centrais, consultar o "Manual de Projeto_Control Box DX AHU", sob risco de perda de capacidade do sistema, dano aos equipamentos e perda da garantia, em caso de desacordo com o que é especificado nos manuais de projeto.

5. Procedimento de Seleção

5.1 Procedimento

Etapa 1: Estabelecer condições de design

Observações:

1. Se a temperatura interna de projeto cair entre duas temperaturas relacionadas na tabela de capacidade da unidade terminal, calcule a capacidade corrigida por interpolação. Se a seleção da unidade terminal for baseada na carga de calor total e na carga de calor sensível, selecione unidades terminais que satisfaçam não apenas os requisitos de carga de calor total de cada ambiente, mas também os requisitos de carga de calor sensível de cada ambiente. Tal como acontece com a capacidade de calor total, a capacidade de calor sensível das unidades terminais deve ser corrigida para a temperatura interna, interpolando sempre que necessário. Para as tabelas de capacidade da unidade terminal, consulte os manuais técnicos da unidade.

5.2 Exemplo

A seguir está um exemplo de seleção baseada na carga de calor total da resfriamento.

Figura 1-5.1: Plano para ambientes

	Ambiente B	Ambiente C
Ambiente A		
	Ambie	ente D

Passo 1: Estabelecer condições de design

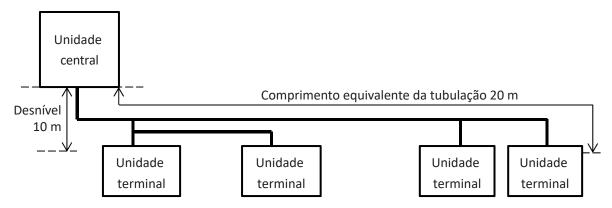

- Temperatura do ar interno 25°C BS, 18°C BU; temperatura do ar externo 33°C BS.
- Determine a carga de pico de cada ambiente e a carga de pico do sistema. Como mostrado na Tabela 1-5.1, a carga de pico do sistema é de 10,5kW.

Tabela 1-5.1: Carga de calor exigida em cada ambiente (kW)

Duração	Ambiente A	Ambiente B	Ambiente C	Ambiente D	Total
9:00	2,5	1,6	1,6	1,6	7,3
12:00	3,2	2,4	2,4	2,4	10,4
14:00	3,1	2,4	2,4	2,6	10,5
16:00	3,1	2,3	2,3	2,3	10

Neste exemplo, os comprimentos da tubulação e os desníveis máximos são apresentados na Figura 1-5.2.

Figura 1-5.2: Diagrama do sistema

Tipo de unidade terminal para todos os ambientes: Duto de pressão estática média (T2).

Passo 2: Selecionar unidades terminais

- Neste exemplo não é usado fator de segurança (ou seja, o fator de segurança é 1).
- Selecionar modelos de unidade terminal usando a tabela de capacidade de resfriamento do duto de pressão estática média. A capacidade corrigida de cada unidade terminal precisa ser maior ou igual à carga de pico do ambiente relevante. As unidades terminais selecionadas são mostradas na Tabela 1-5.3.

Tabela 1-5.2: Extrato da tabelas de capacidade de resfriamento do duto de pressão estática média (T2)

	Temperatura do ar interno														
Madala	Índice de	14°C	BU	16°0	BU	18°0	C BU	19°0	BU	20°0	BU	22°0	BU	24°0	BU
Modelo	capacidade	20°C	BS	23°0	BS	26°	C BS	27°0	BS	28°0	BS	30°0	BS	32°C	BS
		TC	SHC	тс	SHC	TC	SHC	тс	SHC	тс	SHC	TC	SHC	TC	SHC
	22	1,5	1,4	1,8	1,5	2,1	1,6	2,2	1,6	2,3	1,7	2,4	1,5	2,4	1,5
	28	1,9	1,7	2,3	1,9	2,6	2,1	2,8	2,1	3,0	2,1	3,1	2,0	3,1	1,9
	36	2,5	2,1	2,9	2,3	3,4	2,5	3,6	2,6	3,8	2,7	4,2	2,8	3,9	2,3
	45	3,1	2,6	3,7	2,8	4,2	3,1	4,5	3,2	4,8	3,2	4,9	3,1	5,1	2,9
T2	56	3,9	3,0	4,6	3,3	5,3	3,6	5,6	3,7	5,9	3,8	6,2	3,7	6,2	3,4
12	71	4,9	3,9	5,8	4,3	6,7	4,7	7,1	4,9	7,5	4,8	7,8	4,6	7,8	4,3
	80	5,5	4,4	6,6	4,9	7,5	5,3	8,0	5,5	8,4	5,5	8,8	5,2	8,8	4,8
	90	6,2	5,3	7,3	5,8	8,4	6,3	9,0	6,4	9,6	6,5	9,9	6,1	9,9	5,7
	112	7,7	6,4	9,1	7,1	10,5	7,7	11,2	7,8	11,9	8,1	12,5	7,8	12,5	7,4
	140	9,7	7,8	11,3	8,6	13,2	9,6	14,0	9,8	14,8	9,8	15,7	9,7	15,4	8,8

Abreviações:

TC: Capacidade total (kW); SHC: Capacidade de calor sensível (kW)

Tabela 1-5.3: Unidades terminais selecionadas

	Ambiente A	Ambiente B	Ambiente C	Ambiente D	
Carga de calor de pico (kW)	3,1	2,4	2,4	2,6	
Unidade terminal selecionada	MIH36T2HN18	MIH28T2HN18	MIH28T2HN18	MIH28T2HN18	
TC corrigido (kW)	3,6	2,8	2,8	2,8	

Etapa 3: Selecionar unidade central

- Determine a carga de calor total necessária das unidades terminais para a unidade central com base na soma das cargas de pico de cada ambiente ou na carga de pico do sistema. Neste exemplo, ela é determinada com base na carga de pico do sistema. Portanto, a carga de pico necessária é 10,5 kW.
- Selecione provisoriamente uma unidade central usando a soma dos índices de capacidade (ICs) das unidades terminais selecionadas (conforme mostrado na Tabela 1-5.4), garantindo que a taxa de combinação esteja entre 45% e 130%. Consulte a Tabela 1-5.5. Como a soma dos ICs das unidades terminais é 120, todas as unidades centrais são potencialmente adequadas, exceto 8 kW. Comece pela menor, que é a unidade de 10 kW.

Tabela 1-5.4: Soma dos índices de capacidade da unidade terminal

Modelo	Índice de Capacidade	Nº de Unidades		
MIH36T2HN18	36	1		
MIH28T2HN18	28	3		

Soma de CIs	120
-------------	-----

Tabela 1-5.5: Combinações de unidades terminais e centrais

Capacio	dade da unidade central	Soma dos índices de capacidade das unidades terminais
kW	Índice de capacidade	conectadas (somente unidades terminais padrão)
8,0	80	36,0 a 104,0
10,0	100	45,0 a 130,0
12,3	123	55,4 a 159,9
14,0	140	63,0 a 182,0
15,5	155	69,8 a 201,5
17,5	175	78,8 a 227,5

- O número de unidades terminais conectadas é de 4 e o número máximo de unidades terminais conectadas na unidade central de 10kW é de 6, portanto o número de unidades terminais conectadas está dentro da limitação.
- · Calcule a capacidade corrigida da unidade central:
 - a) A soma dos ICs das unidades terminais é 120 e o IC da unidade central de 10 kW é 100; portanto, a proporção de combinação é 120 / 100 = 120%.
 - b) Usando a tabela de capacidade de resfriamento da unidade central, interpole para obter a capacidade ("B") corrigida para a temperatura do ar externo, a temperatura do ar interno e a proporção de combinação. Consulte as Tabelas 1-5.6 e 1-5.7.

Tabela 1-5.6: Extrato da Tabela 2-7.1 Capacidade de resfriamento da MDV-V10W/DHN1(D)

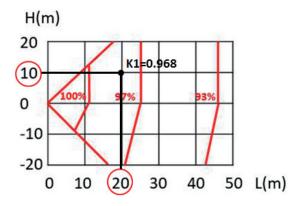

	Temperatura do	Temperatura do ar interno (°C BS / °C BU)			
CR	ar externo	25,8	/ 18,0		
	(°C BS)	TC	PI		
		kW	kW		
	31	10.56	2.50		
120%	33	10.44	2.59		
	35	10.22	2.68		
	31	10.33	2.44		
110%	33	10.22	2.57		
	35	10.00	2.66		

Tabela 1-5.7: Capacidade de resfriamento calculada por interpolação

	Temperatura do	Temperatura do ar interno (°C BS / °C BU)			
CR	ar externo	25,8	/ 18,0		
	(°C BS)	TC	PI		
		kW	kW		
120%	33	10,44	2,59		
		B = 10,41			
		B = 10,4			
110%	33	10,22	2,57		

c) Encontre o fator de correção para o comprimento da tubulação e a diferença de nível ("K1").

Figura 1-5.3: Taxa de alteração de mini na capacidade de resfriamento

d) Calcule a capacidade corrigida da MDV-V10W/DHN1(D) ("C") usando K1:

$$C = B \times K1 = 10,44 \times 0,968 = 10,1 \text{ kW}$$

A capacidade corrigida 10,1 kW é menor que a carga de calor total exigida 10,5 kW; portanto, a seleção não está concluída.
 A etapa 3 deve ser repetida a partir do ponto em que a capacidade da un. central é selecionada provisoriamente.

Repita a etapa 3: Selecionar unidade central

 Determine a carga de calor total necessária das unidades terminais para a unidade central com base na soma das cargas de pico de cada ambiente ou na carga de pico do sistema. Neste exemplo, ela é determinada com base na carga de pico do sistema. Portanto, a carga de pico necessária é 10,5 kW.

- Selecione provisoriamente uma unidade central usando a soma dos índices de capacidade (ICs) das unidades terminais selecionadas (conforme mostrado na Tabela 1-5.5), garantindo que a taxa de combinação esteja entre 20% e 130%. Consulte a Tabela 1-5.6. Como a soma dos ICs das unidades terminais é 120. Para a unidade de 10 kW não é adequada, tente selecionar a unidade de 12 kW.
- O número de unidades terminais conectadas é 4 e o número máximo de unidades terminais conectadas na unidade central de 12 kW é 7; portanto, o número de unidades terminais conectadas está dentro da limitação.
- Calcule a capacidade corrigida da unidade central:
 - a) A soma dos ICs das unidades terminais é 120 e o IC da unidade central de 12 kW é 120; portanto, a taxa de combinação é 120 / 120 = 100%.
 - b) Usando a tabela de capacidade de resfriamento da unidade central, interpole para obter a capacidade ("B") corrigida para a temperatura do ar externo, a temperatura do ar interno e a taxa de combinação. Consulte as Tabelas 1-5.8 e 1-5.9.

Tabela 1-5.8: Extrato da Tabela 2-7.3 Capacidade de resfriamento da MDV-V12W/DHN1(D)

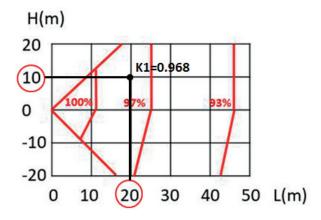

	Temperatura do	Temperatura do ar interno (°C BS / °C BU)			
CR	ar externo	25,8	/ 18,0		
	(°C BS)	TC	PI		
		kW	kW		
	31	11,2	2,46		
100%	33	11,2	2,63		
	35	11,2	2,80		
	31	10,1	2,11		
90%	33	10,1	2,26		
	35	10,1	2,40		

Tabela 1-5.9: Capacidade de resfriamento calculada por interpolação

	Temperatura do	Temperatura do ar interno (°C BS / °C BU)				
CR	ar externo	25,8 / 18,0				
	(°C BS)	TC	PI			
		kW	kW			
100%	33	11,2	2,76			
		B = 11,2				
90%	33	10,1	2,37			

c) Encontre o fator de correção para o comprimento da tubulação e a diferença de nível ("K1").

Figura 1-5.4: Taxa de alteração da capacidade de resfriamento na unidade central

d) Calcule a capacidade corrigida da MDV-V12W/DHN1(D) ("C") usando K1:

$$C = B \times K1 = 11,2 \times 0,968 = 10,84 \text{ kW}$$

• A capacidade corrigida 10,84 kW é maior que a carga de calor total exigida 10,5 kW; portanto, a seleção está concluída.

ESPECIFICAÇÕES & PERFORMANCE - UNIDADE CENTRAIS

1. Especificações

Tabela 2-1.1: Especificações modelos 8/10/12

	Modelo		MDV-V8W/DHN1(D)	MDV-V10W/DHN1(D)	MDV-V12W/DHN1(D)		
Fonte de aliment	ação	V-F-Hz		220V - 1F - 60Hz			
		kW 8,0		10,0	12,3		
	Capacidade	Btu/h	27.000	34.000	41.000		
Resfriamento ¹		Fg/h	6.880	8.600	10.320		
	Potência de entrada ³	kW	2,00	2,55	3,10		
	EER	kW/ kW	4,00	3,92	3,87		
		kW	9,0	12,0	14,0		
	Capacidade	Btu/h	30.000	41.000	47.000		
Aquecimento ²		Fg/h	7.740	10.320	12.040		
	Potência de entrada ³	kW	1,95	2,97	3,45		
	COP	kW/ kW	4,62	4,04	4,06		
Unidade Central	Operação mínima reco	mendada	20%				
N° máximo de U	N° máximo de UTs conectadas		4	6	7		
0	Tipo / Quantidade	-	DC inverter / 1				
Compressor	Tipo de óleo	ml	RB74AF				
\/tild	Tipo / Quantidade	-	DC motor / 1				
Ventilador	Saída	W	80	170	170		
Fluxo de ar exter	no	m³/h	3.700	3.700 5.200			
Nível de pressão	sonora externa⁴	dB(A)	54	54	56		
	Dimensões (LxAxP)	mm	910 x 712 x 426	950 x 840 x 440	950 x 840 x 440		
Unidade central	Embalagem (LxAxP)	mm	1.045 x 810 x 485	1.025 x 950 x 510	1.025 x 950 x 510		
	Peso líquido / bruto	kg	49 / 53	59,5 / 66,5	63/ 70		
	Tipo	-		R-410A			
Refrigerante	Carga de Fábrica	g	1.700	2.300	2.400		
	Tipo de aceleração	-	Vá	álvula de expansão eletrôn	ica		
Tubulação de	Tubo de gás	mm (in)	Ø15,9 (5/8)	Ø15,9 (5/8)	Ø15,9 (5/8)		
refrigerante⁵	Tubo de líquido	mm (in)	Ø9,53 (3/8)		Ø9,53 (3/8)		
Faixa de	Resfriamento	°C		-15° a 55°			
temperatura ambiente	Aquecimento	°C		-15° a 27°			

Observações:

- 1. Condições de resfriamento: temp. interna: 27°C BS (80,6°F), 19°C BU (66,2°F) temp externa: comprimento de tubo equivalente 35°C BS (95°F): comprimento de queda de 7,5 m: 0 m.
- 2. Condições de aquecimento: temp. interna: 20°C BS (68°F), 15°C BU (44,6°F) temp externa: comprimento de tubo equivalente 7°C BS (42,8°F): comprimento de queda de 7,5 m: 0 m.
- 3. Os valores apresentados não devem ser utilizados para dimensionar o cabeamento elétrico.
- 4. Nível de ruído: Valor de conversão de câmara anecoica, medido 1 m à frente da unidade e em altura de 1,2 m. Durante a operação real, estes valores são normalmente maiores como resultado das condições ambientes.
- 5. Os diâmetros apresentados são os da válvula de retenção da unidade.

Tabela 2-1.2: Especificações modelos 14/16/18

	Modelo		MDV-V14W/DHN1(D)	MDV-V16W/DHN1(D)	MDV-V18W/DHN1(D)		
Fonte de aliment	ação	V-F-Hz		220V - 1F - 60Hz			
		kW	14,0	15,5	17,5		
	Capacidade	Btu/h	47.000	52.000	59.000		
Resfriamento ¹		Fg/h	12.040	13.330	15.050		
	Potência de entrada ³	kW	3,75	4,80	5,20		
	EER	kW/ kW	3,73	3,23	3,37		
		kW	16,0	18,0	19,5		
	Capacidade	Btu/h	54.000	61.000	66.000		
Aquecimento ²		Fg/h	13.760	15.480	16.770		
	Potência de entrada ³	kW	3,85	4,65	5,00		
	COP	kW/ kW	4,16	3,87	3,90		
Unidade Central	Operação mínima reco	mendada	20%				
N° máximo de U	Ts conectadas		8	9	9		
0	Tipo / Quantidade	-	DC inverter / 1				
Compressor	Tipo de óleo	ml	RB74AF				
\/ \	Tipo / Quantidade -		DC motor / 1				
Ventilador	Saída	W	170	170	170		
Fluxo de ar exte	no	m³/h	5.200 5.000		5.300		
Nível de pressão	sonora externa⁴	dB(A)	56	56	57		
	Dimensões (LxAxP)	mm	950 x 840 x 440	950 x 840 x 440	1.040 x 865 x 523		
Unidade central	Embalagem (LxAxP)	mm	1.025 x 950 x 510	1.025 x 950 x 510	1.120 x 980 x 560		
	Peso líquido / bruto	kg	75 / 82	77,5 / 84,5	91/ 99		
	Tipo	-		R-410A			
Refrigerante	Carga de Fábrica	g	3.100	3.600	4.600		
	Tipo de aceleração	-	Vá	álvula de expansão eletrôn	ica		
Tubulação de	Tubo de gás	mm (in)	Ø15,9 (5/8)	Ø19,1 (3/4)	Ø19,1 (3/4)		
refrigerante ⁵	Tubo de líquido	mm (in)	Ø9,53 (3/8)		Ø9,53 (3/8)		
Faixa de	Resfriamento	°C		-15° a 55°			
temperatura ambiente	Aquecimento	°C		-15° a 27°			

Observações:

- 1. Condições de resfriamento: temp. interna: 27°C BS (80,6°F), 19°C BU (66,2°F) temp externa: comprimento de tubo equivalente 35°C BS (95°F): comprimento de queda de 7,5 m: 0 m.
- 2. Condições de aquecimento: temp. interna: 20°C BS (68°F), 15°C BU (44,6°F) temp externa: comprimento de tubo equivalente 7°C BS (42,8°F): comprimento de queda de 7,5 m: 0 m.
- 3. Os valores apresentados não devem ser utilizados para dimensionar o cabeamento elétrico.
- 4. Nível de ruído: Valor de conversão de câmara anecoica, medido 1 m à frente da unidade e em altura de 1,2 m. Durante a operação real, estes valores são normalmente maiores como resultado das condições ambientes.
- 5. Os diâmetros apresentados são os da válvula de retenção da unidade.

2. Dimensões

Figura 2-2.1: Dimensões da vista frontal do modelo 8 (unidade: mm)

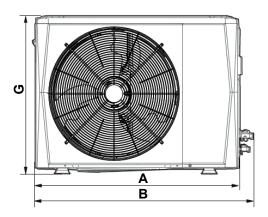


Figura 2-2.3: Dimensões da vista frontal do modelo 10/12/14/16 (unidade: mm)

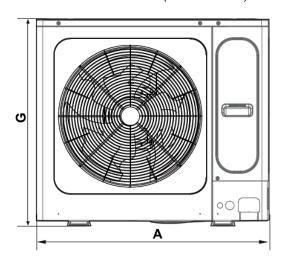


Figura 2-2.5: Dimensões da vista frontal do modelo 18 (unidade: mm)

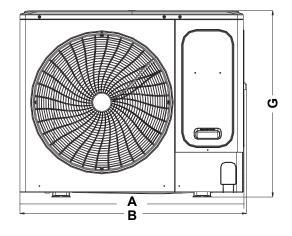


Figura 2-2.2: Dimensões da vista superior do modelo 8 (unidade: mm)

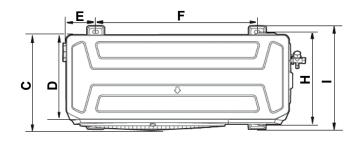


Figura 2-2.4: Dimensões da vista frontal do modelo 10/12/14/16 (unidade: mm)

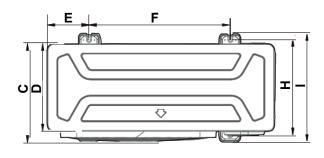
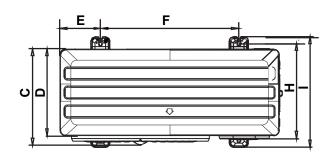



Figura 2-2.6: Dimensões da vista frontal do modelo 18 (unidade: mm)

Modelo	Α	В	С	D	E	F	G	Н	I
8	910	982	390	345	120	663	712	375	426
10/12/14/16	950	/	406	360	175	590	840	390	440
18	1040	1053	452	410	191	656	865	463	523

3. Requisitos do Espaço de Instalação

Figura 2-3.1: Vista superior da instalação da unidade individual (unidade:mm)

Figura 2-3.2: Vista lateral da instalação da unidade individual (unidade: mm)

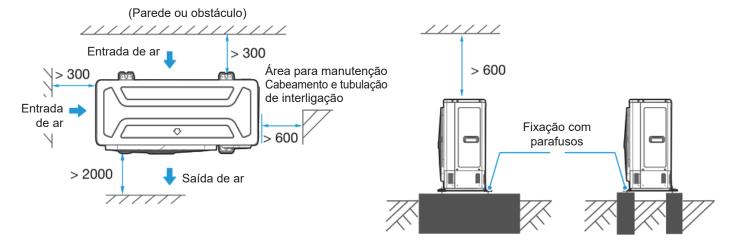


Figura 2-3.3: Vista superior da instalação de múltiplas unidades (unidade: mm)

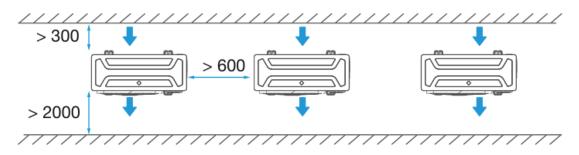
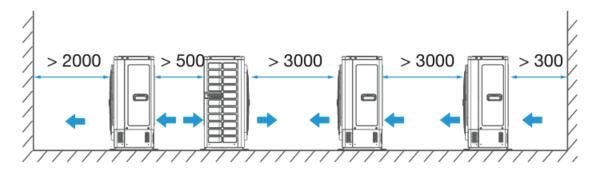



Figura 2-3.4: Vista lateral da instalação de múltiplas unidades (unidade: mm)

4. Diagramas de Tubulação

Figura 2-4.1: Diagramas da tubulação modelo 8kW

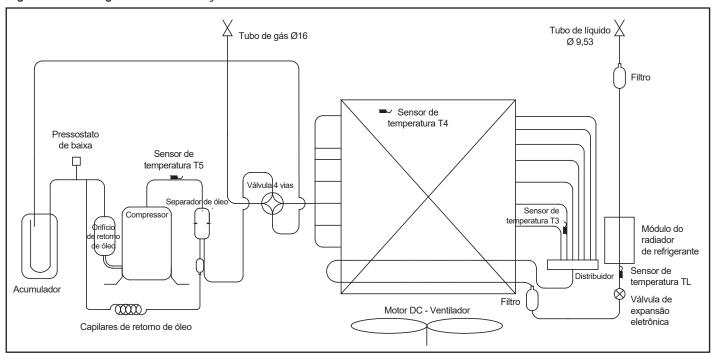


Figura 2-4.2: Diagrama da tubulação modelo 10kW

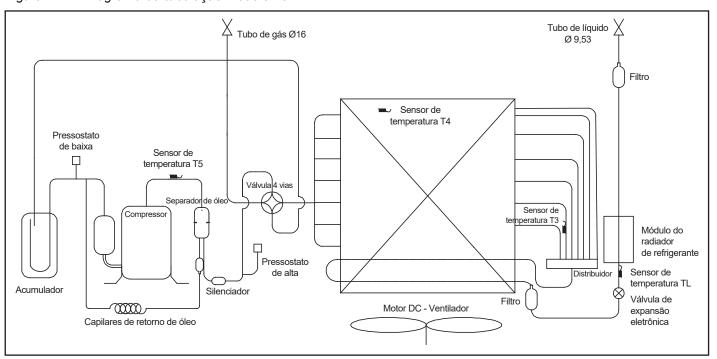


Figura 2-4.3: Diagrama da tubulação modelo 12kW/14kW/16kW

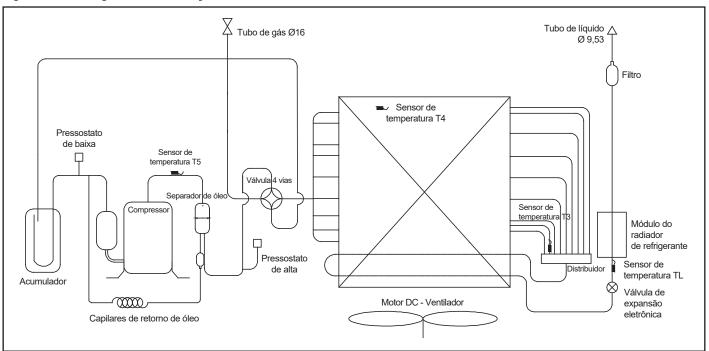
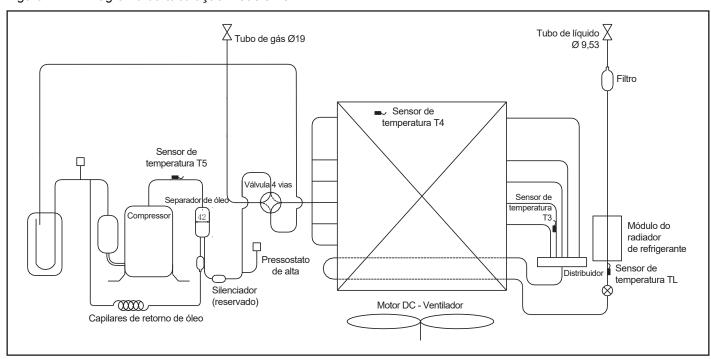



Figura 2-4.4: Diagrama da tubulação modelo 18kW

Componentes principais:

1. Separador de Óleo:

Separa o óleo do refrigerante que é bombeado para fora do compressor e retorna-o rapidamente para o compressor. A eficiência de separação é de até 99%.

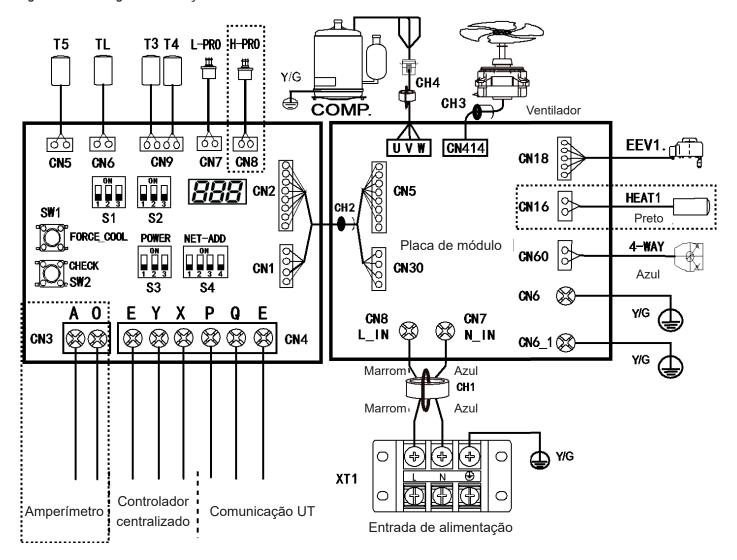
2. Acumulador:

Armazena refrigerante líquido e óleo para proteger o compressor do efeito de "golpe de aríete".

3. Válvula de expansão eletrônica (EXV):

Controla o fluxo do refrigerante e reduz a pressão deste.

4. Válvula de 4 vias (ST1):


Controla a direção do fluxo do refrigerante. Fechada no modo resfriamento e aberta no modo aquecimento. Quando fechada, o trocador de calor funciona como um condensador; quando aberta, ele funciona como um evaporador.

5. Pressostato de alta e de baixa:

Regulam a pressão do sistema. Quando a pressão do sistema fica acima do limite superior ou abaixo do limite inferior, os pressostatos de alta e de baixa abrem o contato, parando o compressor. Após 5 minutos, o compressor será reativado.

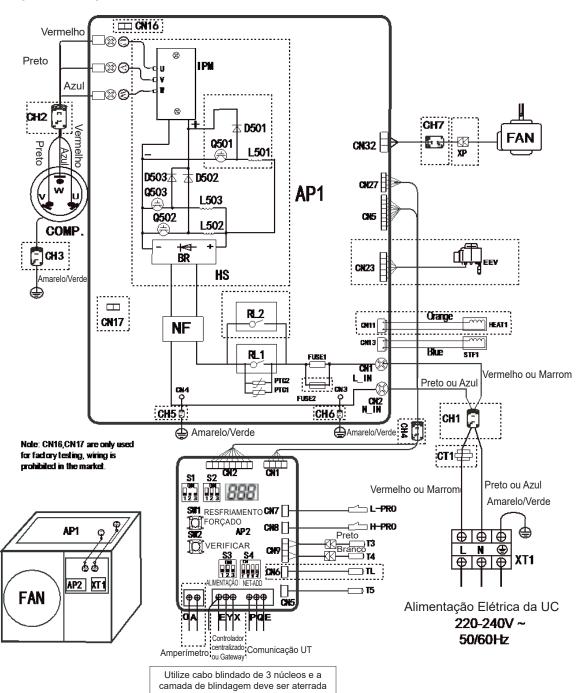

5. Diagramas da Fiação

Figura 2-5.1: Diagrama da fiação modelo 8kW

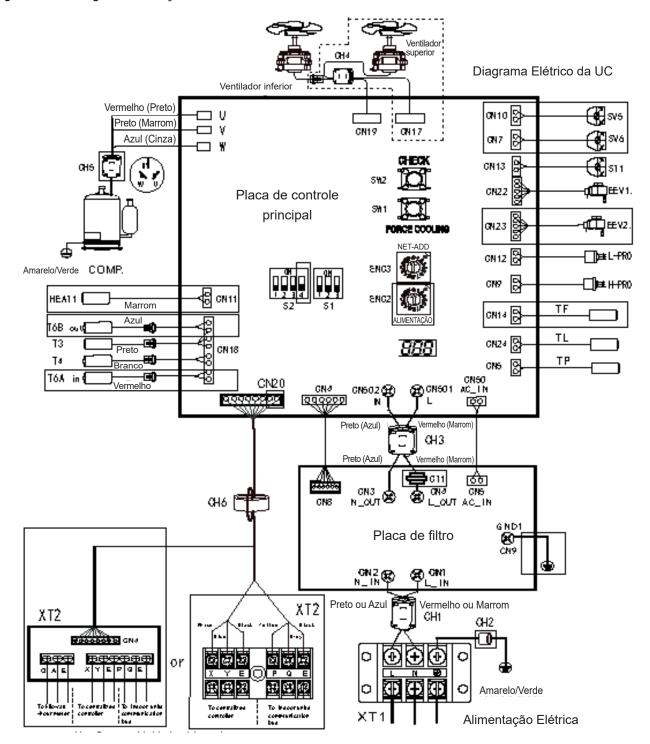

Código do componente	Descrição	Código do componente	Descrição
CH1-CH4	Anel magnético	STF1	Válvula de 4 vias
COMP.	Compressor	TL	Sensor de temperatura do radiador de refrigerante
EEV1	Válvula de expansão eletrônica	XT1	Terminal de alimentação elétrica
FAN	Ventilador DC	Т3	Sensor de temperatura do trocador de calor externo
HEAT1	Aquecedor do cárter	T4	Sensor de temperatura do ar externo
H-PRO	Pressostato de alta pressão (padrão)	T5	Sensor de temperatura de descarga
L-PRO	Pressostato de baixa pressão		

Figura 2-5.2: Diagrama da fiação modelo 10kW/12kW/14kW/16kW

Código do componente	Descrição	Código do componente	Descrição
BR	Empilhamento de ponte retificadora	RL1	Relé
CH1-CH7	Anel magnético	STF1	Válvula de 4 vias
COMP.	Compressor	Т3	Sensor de temperatura do trocador de calor externo
CT1	Transformador de corrente alternada	T4	Sensor de temperatura do ar externo
D501-D503	Diodo de recuperação rápida	T5	Sensor de temperatura de descarga
EEV	Válvula de expansão eletrônica	TL	Sensor de temperatura do radiador de refrigerante
FAN	Ventilador DC	AP1	Painel de controle principal
FUSE1-FUSE2	Fusível	AP2	Placa de verificação
HEAT1	Aquecedor do cárter	XT1	Terminal de alimentação elétrica
HS	Radiador	XP	Terminal de conexão
H-PRO	Pressostato de alta	Q501-Q503	IGBT
L-PRO	Pressostato de baixa	IPM	Módulo inverter
L501-L503	Indutor PFC	NF	Conjunto de filtro

Figura 2-5.3: Diagrama da fiação modelo 18kW

Código do componente Descrição		Código do componente	Descrição
XT1	Terminal da fonte de alimentação de 3 encaixes	H-PRO	Pressostato de alta
XT2	Bloco terminal de 6 encaixes ou comunicação da placa adaptadora	L-PRO	Pressostato de baixa
CHI-CH4	Anel magnético	STF1	Válvula de 4 vias
COMP.	Compressor	Т3	Sensor de temperatura do trocador de calor externo
CT1	Transformador de corrente alternada	T4	Sensor de temperatura do ar externo
EEV1/EEV2	Válvula de expansão eletrônica	TP	Sensor de temperatura de descarga
FAN1	Ventilador superior	TF	Sensor de temperatura da superfície do radiador
FAN2	Ventilador inferior	TL	Sensor de temperatura do radiador de refrigerante
HEAT1	Aquecedor do cárter	SV5/SV6	Válvula solenoide

6. Características Elétricas

Tabela 2-6.1: Características elétricas da unidade central

	Alimentação¹					
Modelo	Frequência		Tensão (V)			BAF A 4
	(Hz)	Nominal	Mín.	Máx.	MCA ²	MFA⁴
MDV-V8W/DHN1(D)	50/60Hz	220-240	198	264	21,25	25
MDV-V10W/DHN1(D)	50/60Hz	220-240	198	264	28,75	32
MDV-V12W/DHN1(D)	50/60Hz	220-240	198	264	35	40
MDV-V14W/DHN1(D)	50/60Hz	220-240	198	264	40	40
MDV-V16W/DHN1(D)	50/60Hz	220-240	198	264	40	40
MDV-V18W/DHN1(D)	50/60Hz	220-240	198	264	40	40

Abreviações:

MCA: Amperagem mínima do circuito; MFA: Amperagem máxima do disjuntor;

Observações:

- 1. As unidades são adequadas para uso em sistemas elétricos onde a tensão fornecida para os terminais da unidade não está abaixo ou acima dos valores mínimos e máximos indicados acima. A variação de tensão máxima permitida entre as fases é de 2%.
- 2. Para o dimensionamento da fi ação, recomendamos utilizar o campo MCA (A) da tabela como base para cálculo.
- 3. Para o dimensionamento do disjuntor, recomendamos utilizar o campo MFA (A) da tabela como base para cálculo.

7. Fatores de Correção de Capacidade para Comprimento da Tubulação e Desnível

Figura 2-7.1: Taxa de alteração de modelo 8kW na capacidade de resfriamento

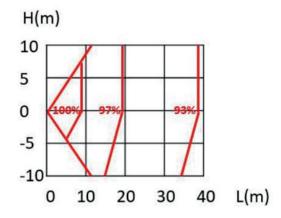


Figura 2-7.3: Taxa de alteração de modelo 10kW-12kW na capacidade de resfriamento

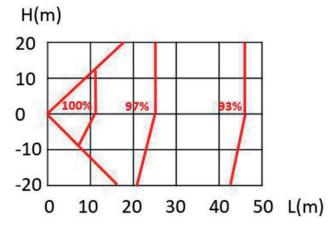


Figura 2-7.5: Taxa de alteração de modelo 14kW-16kW na capacidade de resfriamento

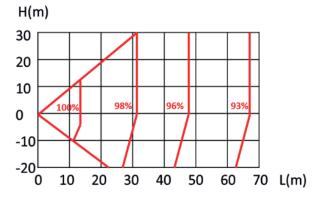


Figura 2-7.5: Taxa de alteração de modelo 18kW na capacidade de resfriamento

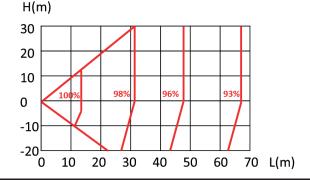


Figura 2-7.2: Taxa de alteração de modelo 8kW na capacidade de aquecimento

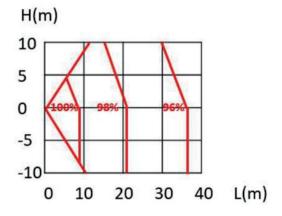


Figura 2-7.4: Taxa de alteração de modelo 10kW-12kW na capacidade de aquecimento

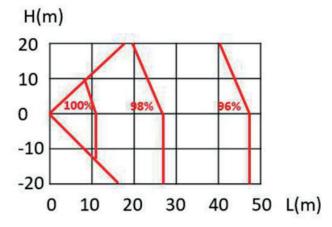


Figura 2-7.6: Taxa de alteração de modelo 14kW-16kW na capacidade de aquecimento

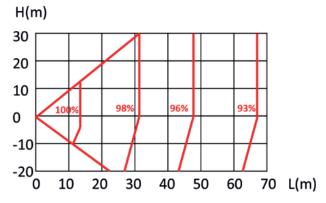
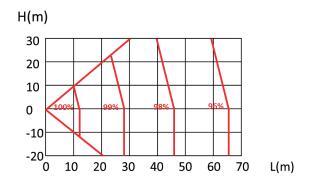
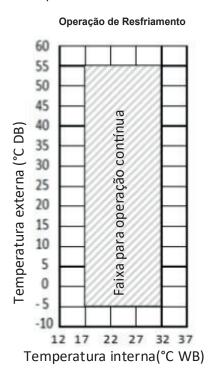



Figura 2-7.6: Taxa de alteração de modelo 18kW na capacidade de aquecimento

Observações:


 O eixo horizontal mostra o comprimento equivalente da tubulação entre a unidade terminal mais distante e a primeira junta de derivação externa; o eixo vertical mostra o maior desnível entre a unidade terminal e a unidade central. Quanto aos desníveis, valores positivos indicam que a unidade central está acima da unidade terminal, valores negativos indicam que a unidade central está abaixo da unidade terminal.

- 2. Essas figuras ilustram a taxa de alteração na capacidade de um sistema com apenas unidades terminais padrão em carga máxima (com o termostato ajustado no máximo), sob condições padrão. Sob condições de carga parcial, há apenas um pequeno desvio da taxa de alteração na capacidade mostrada nessas figuras.
- 3. A capacidade do sistema é a capacidade total das unidades terminais, obtida das tabelas de capacidade de unidade terminal ou a capacidade corrigida das unidades centrais, conforme os cálculos abaixo, o que for menor.

Capacidade corrigida das unidades centrales obtida das tabelas de capacidade de unidade central na relação de combinação X Fator de correção da capacidade

8. Limites Operacionais

Figura 2-8.1: Limites operacionais

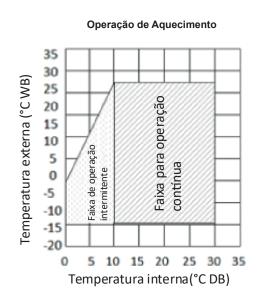


Tabela 2-8.1: Limites operacionais

Modo	Temperatura externa	Temperatura ambiente
Operação de resfriamento	-5°C ~ 55°C	17°C ~ 32°C
Operação de aquecimento	-15°C ~ 27°C	0°C ~ 30°C
Operação de desumidificação	-5°C ~ 55°C	12°C ~ 32°C

Observações:

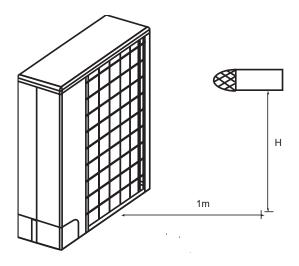
- Se a unidade estiver funcionando fora da condição acima, o dispositivo de proteção será iniciado e, mesmo assim, ocorrerão anormalidade na execução das unidades.
- Estes números se baseiam nas condições de operação entre unidades terminais e unidades centrais: O comprimento do tubo equivalente é 7,5 m, e a diferença de altura é 0 m.

Precaução:

 A umidade relativa interna deve ser inferior a 80%. Se a unidade funcionar em um ambiente com umidade relativa maior do que a mencionada acima, a superfície da unidade pode condensar. Neste caso, é recomendado definir a velocidade do ar da unidade terminal para alta.

9. Níveis de Ruído

9.1 Geral


Tabela 2-9.1: Nível de pressão sonora

Modelo	dB(A)	Altura (m)
MDV-V8W/DHN1(D)	54	1,2
MDV-V10W/DHN1(D)	54	1,2
MDV-V12W/DHN1(D)	56	1,2
MDV-V14W/DHN1(D)	56	1,2
MDV-V16W/DHN1(D)	56	1,2
MDV-V18W/DHN1(D)	57	1,2

Observações:

1. O nível de pressão sonora é medido em uma posição 1 m à frente da unidade e H metros acima do chão em uma câmara semianecoica. Durante a operação no local onde estiver instalado, os níveis de pressão sonora podem ser maiores em consequência do ruído do ambiente.

Figura 2-9.1: Medição do nível de pressão sonora (unidade: m)

9.2 Níveis da Faixa de Oitava

Figura 2-9.2 nível da faixa de oitava do 8 kW

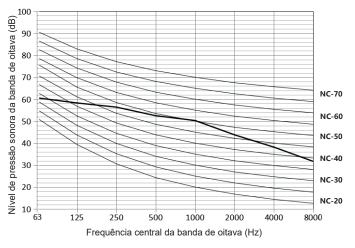


Figura 2-9.3 níveis da faixa de oitava do modelo 10 kW

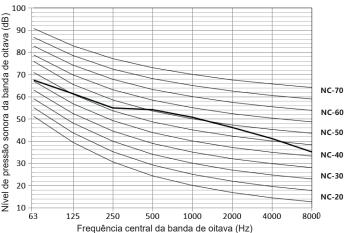


Figura 2-9.4 níveis da faixa de oitava do modelo 12 kW

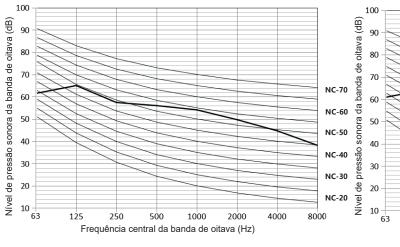


Figura 2-9.5 níveis da faixa de oitava do modelo 14 kW

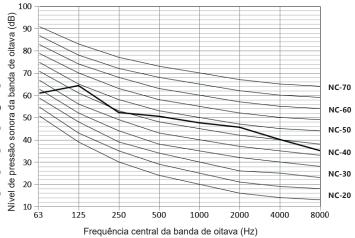


Figura 2-9.6 Nível da faixa de oitava da 16 kW

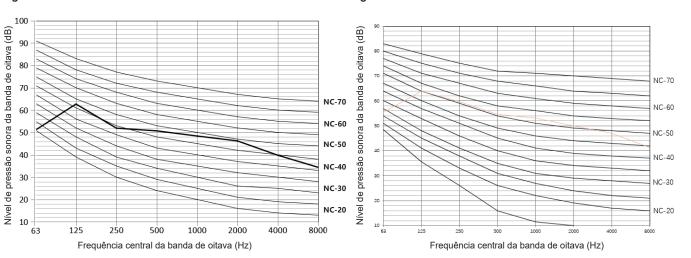


Figura 2-9.5 níveis da faixa de oitava do modelo 18 kW

10. Acessórios

Tabela 2-10.1: Acessórios padrão

Nome	Formato	Quantidade	
Manual de instalação da unidade central		1	
Conexão para o tubo de saída de água		1	
Cabo correspondente de rede	بُ	2	
Anel de fiação de borracha (para modelos 10/12/14/16)		2	
Tubo de conexão (para modelos 16/18)		1	

DESIGN E INSTALAÇÃO DO SISTEMA

1. Prefácio

1.1 Caixas com Observações para Instaladores

As informações contidas neste Manual de engenharia podem ser usadas principalmente durante a etapa de projeto de um sistema com a linha Mini VRF Midea. Outras informações importantes, que podem ser usadas principalmente durante a instalação em campo, foram colocadas em caixas, como no exemplo abaixo, intituladas "Observações para instaladores".

OBSERVAÇÕES PARA INSTALADORES: 🛠

As caixas Observações para Instaladores contêm informações importantes que podem ser usadas principalmente durante a instalação em campo ao invés da fase de projeto em escritório.

1.2 Definições

Neste Manual de dados de engenharia, o termo "legislação aplicável" refere-se a todas as leis, normas, códigos, regras, regulamentos e outras legislações nacionais, locais e outras que se aplicam a determinada situação.

1.3 Precauções

Toda a instalação do sistema, inclusive a da tubulação e obras elétricas, só deve ser executada por profissionais competentes e devidamente qualificados, certificados e credenciados, e de acordo com toda a legislação aplicável.

2. Posicionamento e Instalação das Unidades

2.1 Unidades Centrais

2.1.1 Considerações sobre posicionamento

O posicionamento da unidade deve levar em conta as seguintes considerações:

- Os condicionadores de ar não devem ser expostos à radiação direta de fontes de calor de alta temperatura.
- Os condicionadores de ar não devem ser instalados em posições em que poeira ou sujeira possam afetar os trocadores de calor.
- Os condicionadores de ar não devem ser instalados em locais em que possam ser expostos a óleo ou gases corrosivos ou nocivos, como gases ácidos ou alcalinos.
- Os condicionadores de ar não devem ser instalados em locais em que possam ser expostos à salinidade, a não ser que tenha sido adicionada a opção personalizada de tratamento anticorrosivo para áreas de alta salinidade e tenham sido tomadas as precauções descritas na Parte 3, 9 "Instalação em áreas de alta salinidade".
- As unidades centrais devem ser instaladas em posições com boa drenagem e boa ventilação, o mais próximo possível das unidades terminais.

2.1.2 Espaçamento

As unidades devem ser espaçadas de modo que haja fluxo de ar suficiente por todas as unidades. Um fluxo de ar suficiente pelos trocadores de calor é essencial para que as unidades centrais funcionem adequadamente. As Figuras 3-2.1 e 3-2.3 exibem os requisitos de espaçamento em três diferentes cenários.

Figura 3-2.1: Instalação de uma única unidade (unidade: mm)

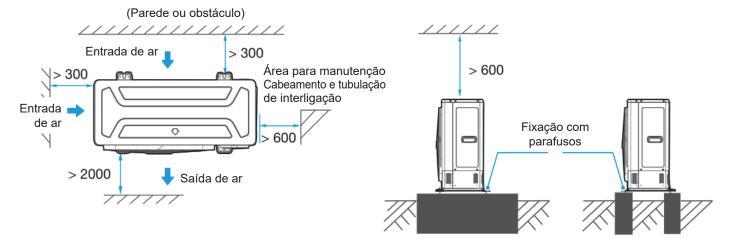
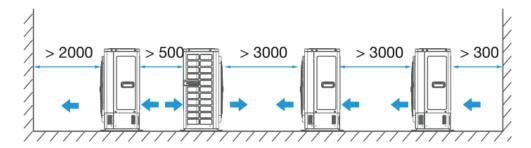
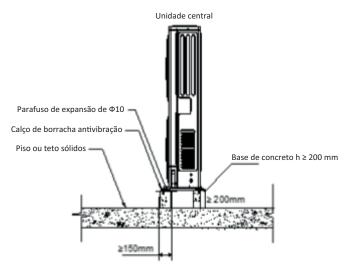



Figura 3-2.2: Instalação de duas ou mais unidades com as laterais em paralelo (unidade: mm)

Figura 3-2.3: Instalação das unidades com as partes frontais e traseiras em paralelo (unidade: mm)

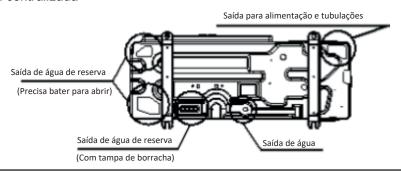

2.1.3 Estruturas de base

O projeto da estrutura da base da unidade central deve considerar os seguintes aspectos:

• Uma base sólida evita vibração e ruído excessivos. As bases da unidade central devem ser construídas em piso sólido ou em estruturas com resistência suficiente para suportar o peso das unidades.

- As bases devem ter pelo menos 200 mm de altura para oferecer acesso suficiente para instalação da tubulação.
- Bases de aço ou concreto podem ser adequadas.
- Um projeto típico de base de concreto é exibido na Figura 3-2.4. As especificações típicas para o concreto abrangem uma parte de cimento, duas partes de areia e seis partes de pedra britada com barra de reforço de aço de Ø10 mm.
 As extremidades da base devem ser chanfradas.
- Para garantir que todos os pontos de contato estejam igualmente seguros, as bases devem ser completamente niveladas. O projeto da base deve garantir que os pontos nas bases das unidades sejam projetados para suportar peso sejam totalmente apoiados.
- Deve ser fornecida uma vala de drenagem para permitir a drenagem de condensado que possa formar nos trocadores de calor quando as unidades estiverem funcionando no modo aquecimento. A drenagem deve garantir que o condensado seja direcionado para longe de vias e calçadas, especialmente em locais em que o clima seja tal que o condensado possa congelar.

Figura 3-2.4: Projeto da estruturas da base de concreto de unidade central típica (unidade: mm)



2.1.4 Drenagem centralizada

Durante a instalação da unidade central, preste atenção ao local da instalação e ao padrão de drenagem; se a unidade for instalada em uma região onde há neve, a água condensada congelada bloqueará a saída de água. Retire a tampa de borracha da saída de água de reserva. Se a drenagem de água ainda não funcionar, fure as outras duas saídas e a água poderá ser drenada apropriadamente.

Tome cuidado para furar a saída de água de reserva de fora para dentro. Ela não poderá sofrer reparos depois de furada. Preste atenção ao local de instalação para que não tenha problemas. Realize a vedação contra insetos no furo para evitar a entrada de insetos no aparelho e a destruição dos componentes.

Figura 3-2.5: Drenagem centralizada

2.1.5 Aceitação e desembalagem

OBSERVAÇÕES PARA INSTALADORES: 🦠

• Quando as unidades forem entregues, verifique se ocorreu algum dano durante o transporte. Se houver danos na superfície ou fora de uma unidade, envie um relatório por escrito à empresa de transporte.

- Verifique se o modelo, as especificações e a quantidade das unidades entregues estão em conformidade com o pedido.
- Verifique se todos os acessórios solicitados estão incluídos. Mantenha o manual de Proprietário e Instalação para futuras referências.

2.1.6 Içamento

OBSERVAÇÕES PARA INSTALADORES:

- Não remova nenhuma embalagem antes do içamento. Se as unidades não estiverem embaladas ou se a embalagem estiver danificada, use placas ou material de embalagem para protegê-las.
- Ice uma unidade de cada vez, usando duas cordas para garantir a estabilidade.
- Mantenha as unidades na vertical durante o içamento, assegurando que o ângulo na vertical não exceda 30°.

2.2 Unidades Terminais

2.2.1 Considerações sobre posicionamento

O posicionamento das unidades terminais deve levar em conta as seguintes considerações:

- Deve-se permitir espaço suficiente para a tubulação de drenagem e para o acesso durante serviços e manutenção.
- Para garantir um bom efeito de resfriamento/aquecimento, deve-se evitar ventilação de curto-circuito (onde o ar de saída retorna rapidamente à entrada de ar de uma unidade).
- Para evitar ruído ou vibração excessivos durante a operação, as hastes de suspensão ou outras fixações de apoio de peso normalmente devem suportar o dobro do peso da unidade.

OBSERVAÇÕES PARA INSTALADORES: 🛠

- Antes de instalar uma unidade terminal, verifique se o modelo a ser instalado está conforme o especificado nos desenhos de construção e confirme a orientação correta da unidade.
- Certifique-se de que as unidades sejam instaladas na altura correta.
- Para permitir a drenagem suave de condensado e garantir a estabilidade da unidade (a fim de evitar ruídos ou vibrações excessivas), certifique-se de que as unidades estejam niveladas a 1° da horizontal. Se uma unidade não estiver nivelada a 1° da horizontal, pode ocorrer vazamento de água ou vibração/ruído anormal.

3. Projeto da Tubulação de Refrigerante

3.1 Considerações sobre Projeto

O projeto da tubulação de refrigerante deve levar em conta as seguintes considerações:

- A quantidade de soldagem necessária deve ser mantida a um mínimo.
- Nos dois lados internos da primeira junta de derivação interna ("A" nas Figuras 3-3.4, e Figura 3-3.5), o sistema deve, na medida do possível, ser igual em termos do número de unidades, das capacidades totais e do comprimento total da tubulação.

3.2 Especificação de Material

Deve ser usada somente tubulação de cobre desoxidada com fósforo, que esteja em conformidade com toda a legislação aplicável. Os graus de têmpera e as espessuras mínimas para diferentes diâmetros de tubulação estão especificados na Tabela 3-3.1.

Tabela 3-3.1: Têmpera	e espessura	da tubulação
-----------------------	-------------	--------------

Diâmetro exteri	no da tubulação	Tâmnara	Espessura mínima
mm	(in)	Têmpera	mm
6,35	1/4		0,8
9,53	3/8		0,8
12,7	1/2	O (recozido)	1,0
15,9	5/8	(.0002.00)	1,0
19,1	3/4		1,0
22,2	7/8	1/2H (meio duro)	1,0
O: tubulação enrolada; 1/2H: tubulação reta.			

3.3 Comprimentos de Tubulação e Desníveis Permitidos

Os requisitos de comprimento da tubulação e de desnível aplicáveis estão resumidos na Tabela 3-3.2 e são descritos de modo completo a seguir (consulte as Figura 3-3.1 e 3-3.2):

Método 1 de conexão (utilizando header)

Figura 3-3.1: Até 6 Unidades Terminais

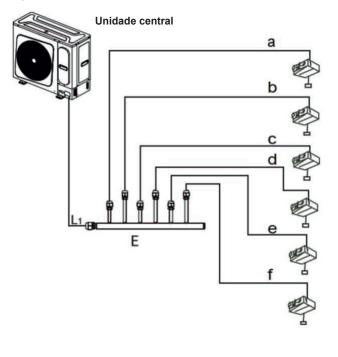
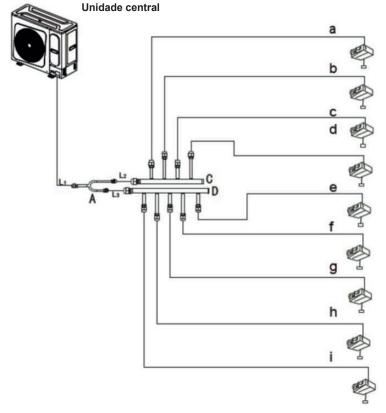
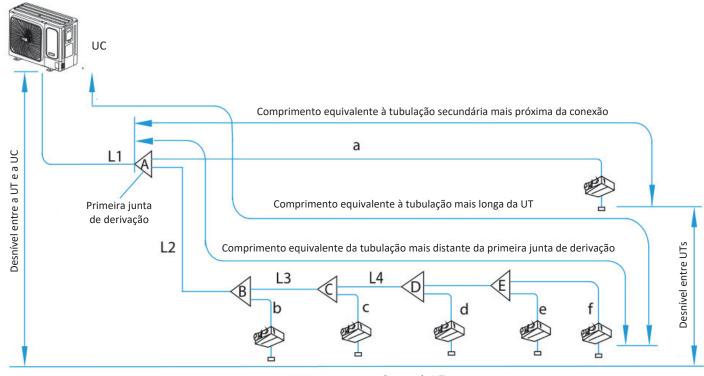




Figura 3-3.2: Até 9 Unidades Terminais

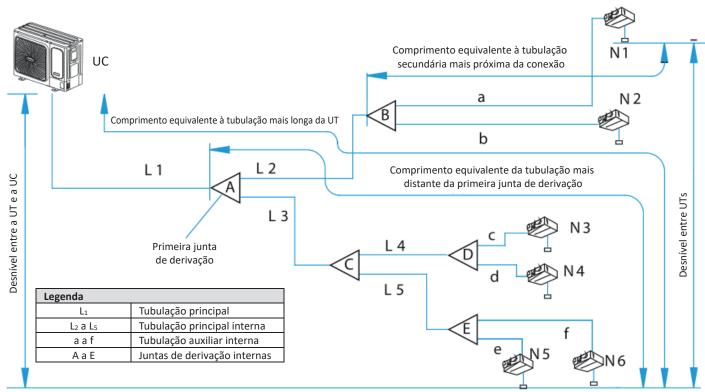

Método 2 de conexão (utilizando juntas de derivação internas)

Figura 3-3.3: Primeiro método de conexão

Grupos de UTs

Figura 3-3.4: Segundo método de conexão

Grupos de UTs

Tabela 3-3.2: Resumo dos comprimentos de tubulação do refrigerante e desníveis permitidos

			Valores permitidos	Tubulação (com Header)	Tubulação (com Juntas de Derivação)	
			≤70m (modelo 80)			
	Total (real)		≤90m (modelos 100/120)	L1+L2+L3+a+b+c+d+e+f+ g+h+i	L1+L2+L3+L4+L5+a+b+c+d+e+f	
			≤130m (modelos 140/160/180)	9		
) 30			≤35m (modelo 80)			
ılaç		Real	≤45m (modelos 100/120)	L1+máx (a,b,c,d,e,f) (até 6 UTs)	L1+L2+L3+L4+L5+f	
de tubulação	Tubulação		≤60m (modelos 140/160/180)	(alc 0 0 13)	(1º método de conexão)	
	máxima		≤40m (modelo 80)	L1+L2+máx (a,b,c,d) ou	ou L1+L3+L5+f	
ntos		Equivalente	≤50m (modelos 100/120)	L1+L3+máx (e,f,g,h,i) (mais de 6 UTs)	(2ºmétodo de conexão)	
ime			≤70m (modelos 140/160/180)	,		
Сотрг	Desde a primeira derivação até a UT mais distante		≤20m	L2+max (a, b, c, d) ou L3+max (e, f, g, h, i)	L2+L3+L4+L5+f (1ºmétodo de conexão) ou L3+L5+f (2ºmétodo de conexão)	
Desde a derivaçãomais próxima até a UT		_	≤15m	a, b, c, d, e, f, g, h, i	a, b, c, d, e, f	
			≤10m (modelo 80)			
		Unid. central superior	≤20m (modelos 100/120)	-	-	
eis		≤30m (modelos 140/160/180)				
Desníveis	UT - UC Unid. central inferior		≤10m (modelo 28/36)	-		
De			≤20m (modelos 100/120)		-	
	i i i i i i i i i i i i i i i i i i i		≤20m (modelos 140/160/180)			
	Entre as UT	s	≤10m	-	-	

Tabela 3-3.3: Unidades terminais conectadas

Modelo	Número máximo de unidades terminais conectadas	Alcance de capacidade da unid. terminal conectada
MDV-V8W/DHN1(D)	4	36 a 104
MDV-V10W/DHN1(D)	6	45 a 130
MDV-V12W/DHN1(D)	7	54 a 156
MDV-V14W/DHN1(D)	8	63 a 182
MDV-V16W/DHN1(D)	9	72 a 208
MDV-V18W/DHN1(D)	9	81 a 234

Se a unidade central está acima e a diferença de nível é maior que 20m, recomenda-se que uma curva de retorno de óleo com as dimensões especificadas na Figura 3-4.1 seja definida a cada 10m na tubulação de gás da tubulação principal.

Figura 3-4.1: Curva de retorno do óleo

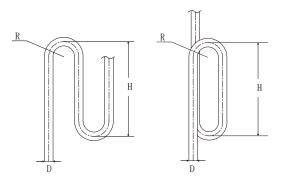


Tabela 3-4.3: Requisitos de curva de retorno de óleo (unidade: mm)

Dimensão do tubo (mm/in)	Raio de curvatura (R)	Altura (H)
Ø19,1 (3/4)	≥ 31	
Ø25,4 (1)	≥ 45	≥ 300
Ø31,8 (1-1/4)	≥ 60	
Ø41,3 (1-5/8)	≥ 80	
Ø50,8 (2)	≥ 90	≥ 500
Ø63,5 (2-1/2)	≥ 90	

3.4 Seleção dos Diâmetros da Tubulação

As Tabelas 3-3.4 a 3-3.6, a seguir, especificam os diâmetros de tubo necessários para tubulação interna e externa. A tubulação principal (L1) e a primeira junta de derivação interna (A) devem ser dimensionadas de acordo com o indicado nas Tabelas 3-3.4 e 3-3.5 para dimensões maiores.

Figura 3-3.3: Seleção dos diâmetros da tubulação

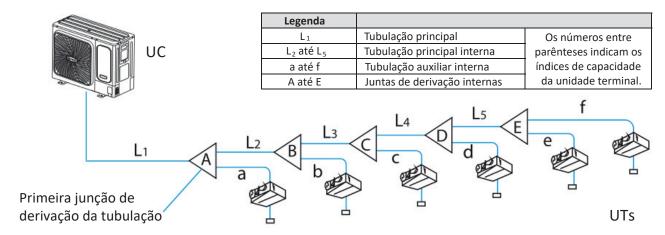


Tabela 3-3.4: Tubulação principal¹ (L.,) tubulações principais internas (L2 a L5) e kits de junta de derivação interna

Capacidade da unidade terminal (Ax10)	Tubo de gás	Tubo de líquido	Kit de juntas de derivação
A<160	Ø15,9mm (Ø5/8in)	Ø9,53mm (Ø3/8in)	FQZHN-01D
160 ≤ A < 230	Ø19,1mm (Ø3/4in)	Ø9,53mm (Ø3/8in)	FQZHN-01D

Observações:

 A tubulação principal (L₁) e a primeira junta de derivação interna (A) devem ser dimensionadas de acordo com o indicado nas Tabelas 3-3.4 e 3-3.5 para maiores dimensões.

Tabela 3-3.5: Tubulação principal 1 (L_1) e primeira de junta de derivação interna (A)

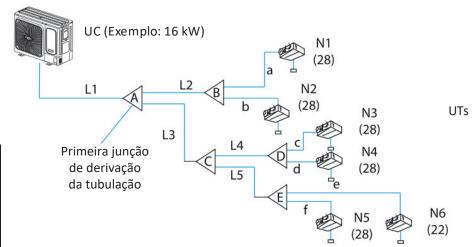
Capacidade da unidade	Comprimento equivalente de todas as tubulações de gás e líquido < 90 m		•	quivalente de todas a le gás e líquido ≥ 90	•	
central (A×10)	Tubo de gás	Tubo de líquido	Kit de juntas de derivação	Tubo de gás	Tubo de líquido	Kit de juntas de derivação
A<155	Ø15,9mm (Ø5/8in)	Ø9,53mm (Ø3/8in)	FQZHN-01D	Ø19,1mm (Ø3/4in)	Ø9,53mm (Ø3/8in)	FQZHN-01D
155≤A<230	Ø19,1mm (Ø3/4in)	Ø9,53mm (Ø3/8in)	FQZHN-01D	Ø22,2mm (Ø7/8in)	Ø9,53mm (Ø3/8in)	FQZHN-02D

Observações:

- 1. A tubulação principal (L₁) e a primeira junta de derivação interna (A) devem ser dimensionadas de acordo com o indicado nas Tabelas 3-3.4 e 3-3.5 para dimensões maiores;
- 2. A distância em linha reta entre a curva da tubulação de cobre e a tubulação secundária contígua é de no mínimo 0,5 m.
- 3. A distância em linha reta entre as tubulações secundárias contíguas é de no mínimo 0,5 m.
- 4. A distância em linha reta das tubulações secundárias conectadas à UT é de no mínimo 0,5 m.

Tabela 3-3.6: Tubulações auxiliares internas (a a f)

Capacidade da unidade terminal (A×100 W)	Tubo de gás (mm)	Tubo de líquido (mm)
A≤45	Ø12,7 (1/2 in)	Ø6,35 (1/4 in)
A≥56	Ø15,9 (5/8 in)	Ø9,53 (3/8 in)


Tabela 3-3.7: Diâmetro da tubulação da própria unidade central

Modelo de unidade central	Tubo de gás (mm)	Tubo de líquido (mm)
MDV-V8~14W/DHN1(D)	Ø15,9 (5/8 in)	Ø9,53 (3/8 in)
MDV-V16~18W/DHN1(D)	Ø19,1 (3/4 in)	Ø9,53 (3/8 in)

3.5 Exemplo de Seleção de Tubulação de Refrigerante

O exemplo abaixo ilustra o procedimento de seleção da tubulação para um sistema que contém uma unidade central (16 kW) e 6 unidades terminais. O comprimento equivalente de todas as tubulações de gás e líquido do sistema é maior que 90 m.

Figura 3-3.4: Exemplo de seleção de tubulação de refrigerante

Legenda		
L ₁	Tubulação principal	
L₂ até L₅	Tubulação principal interna	
a até f Tubulação auxiliar interna		
A até E Juntas de derivação internas		
Os números entre parênteses indicam os		
índices de capacidade da unidade terminal.		

Etapa 1: Selecione as tubulações auxiliares internas

• Unidades terminais N1~N5 são de capacidade 2,8 kW, N6, é 2,2 kW. Consulte a Tabela 3-3.6. As tubulações auxiliares internas a, b, c, d, e, f têm diâmetro Ø12,7mm (Ø1/2in) / Ø6,35mm (Ø1/4in).

Etapa 2: Selecione as tubulações principais internas e as juntas de derivação internas B a E

- As unidades terminais (N₁ e N₂) abaixo da junta de derivação interna B têm capacidade total de 28 x 2 = 56.
 Consulte a Tabela 3-3.4. A tubulação principal interna L₂ tem diâmetro Ø15,9mm (Ø5/8in) / Ø9,53mm (Ø3/8in).
 A junta de derivação interna B é FQZHN-01D.
- As unidades terminais (N₃ e N₄) abaixo da junta de derivação interna E têm capacidade total de 28 x 2 = 56.
 Consulte a Tabela 3-3.4. A tubulação principal interna L₄ tem diâmetro Ø15,9mm (Ø5/8in) / Ø9,53mm (Ø3/8in).
 A junta de derivação interna D é FQZHN-01D.
- As unidades terminais (N₅ e N₆) abaixo da junta de derivação interna E têm capacidade total de 22+28 = 50.
 Consulte a Tabela 3-3.4. A tubulação principal interna L₅ tem diâmetro Ø15,9mm (Ø5/8in) / Ø9,53mm (Ø3/8in).
 A junta de derivação interna E é FQZHN-01D.
- As unidades terminais (N₃ a N₆) abaixo da junta de derivação interna C têm capacidade total de 28 x 3+ 22 = 106.
 Consulte a Tabela 3-3.4. A tubulação principal interna L₃ tem diâmetro Ø15,9mm (Ø5/8in) / Ø9,53mm (Ø3/8in).
 A junta de derivação interna C é FQZHN-01D.

Etapa 3: Selecione a tubulação principal e a junta de derivação interna A

As unidades terminais (N₁ a N₆) abaixo da junta de derivação interna A têm capacidade total de 28 x 5 + 22 = 162.
 O comprimento equivalente de todas as tubulações de gás e líquido do sistema é maior que 90m.
 A capacidade da unidade central é 16 kW. Consulte as Tabelas 3-3.4 e 3-3.5. Tubulação principal L₁ é Ø22,2mm (Ø7/8in) / Ø9,53mm (Ø3/8in), junta de derivação interna A é FQZHN-02D.

3.6 Juntas de Derivação

O projeto da junta de derivação deve levar em conta o seguinte.

• Devem ser usadas juntas de derivação no formato de U – juntas em T não são adequadas. As dimensões de juntas de derivação são dadas nas Tabelas 3-3.7.

• Para garantir uma distribuição uniforme do refrigerante, as juntas de derivação não devem ser instaladas a uma distância mínima de 500 mm de uma curva de 90°, de outra junta de derivação ou de uma seção reta da tubulação que leve a uma unidade terminal, sendo o mínimo de 500 mm medido a partir do ponto onde a junta de derivação está conectada à tubulação, conforme mostrado na Figura 3-3.5.

Figura 3-3.5: Espaçamento e separação entre junta de derivação e curvas (unidade: mm)

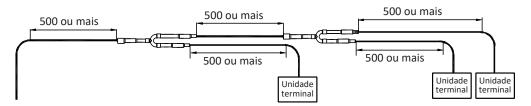


Tabela 3-3.8: Dimensões de junta de derivação interna (unidade: mm)

Modelo	Juntas do lado gás	Juntas do lado líquido
FQZHN-01D	(D:15.9) (D:19.1 OD:19.1 OD:19.1 OD:19.1 (D:15.9	D:6.4 (D:9.5) (D:9.5) (D:9.5) (D:9.5)
FQZHN-02D	(ID:12.2 OD:22.2 OD:22.2 OD:22.2 OD:22.2 OD:22.2 OD:22.2	1D:6.4 1D:9.5 1D:9.5 1D:12.7 1D:12.7 1D:12.7

3.7 Precauções Contra Vazamentos de Refrigerante

O refrigerante R-410A não é inflamável no ar a temperaturas de até 100°C à pressão atmosférica e geralmente é considerado uma substância segura para utilização em sistemas de ar-condicionado. No entanto, devem ser tomadas precauções para evitar perigo de vida, no caso improvável de um vazamento importante de refrigerante. As precauções devem ser tomadas de acordo com toda a legislação aplicável. Onde não existe legislação aplicável, as seguintes considerações podem ser utilizadas como um guia:

- Os ambientes climatizados devem ser grandes o suficiente para que, caso ocorra vazamento de todo o refrigerante do sistema, a concentração do gás no ambiente não atinja um nível perigoso para a saúde.
- Pode ser usada uma concentração de 0,3 kg/m³ como crítica (ponto em que o R-410A se torna perigoso para a saúde).
- A concentração potencial de refrigerante em um ambiente após um vazamento pode ser calculada como segue:
 - Calcule a quantidade total de refrigerante no sistema ("A") como a carga da placa de identificação (a carga no sistema quando entregue da fábrica) mais a carga adicionada conforme a Parte 3, 7.1 "Cálculo de Carga Adicional de Refrigerante".
 - Calcule o volume total ("B") do menor ambiente no qual o refrigerante poderia vazar.
 - Calcule a concentração potencial de refrigerante dividindo A por B.
 - Se a concentração (A/B) for igual ou maior que 0,3 kg/m³, medidas preventivas devem ser tomadas, como a instalação de ventiladores mecânicos (ventilando regularmente ou controlados por detectores de vazamento de refrigerante).
- Como o R-410A é mais pesado que o ar, deve ser dada atenção especial a cenários de vazamento em ambientes muito fechados (por exemplo: um porão).

Figura 3-3.6: Cenário de vazamento de refrigerante em potencial

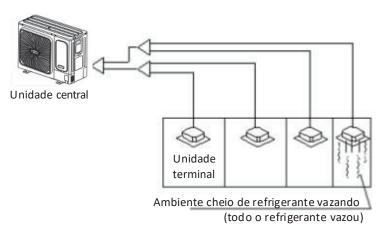
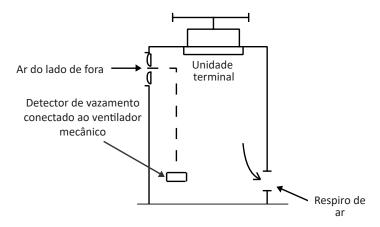



Figura 3-3.7: Ventilador mecânico controlado por detector de vazamento de refrigerante

4. Instalação da Tubulação de Refrigerante

4.1 Procedimento e Princípios

4.1.1 Procedimento de instalação

Observações para instaladores: 🛠

A instalação do sistema de tubulação de refrigerante deve ocorrer na seguinte ordem:

Isolamento dos tubos

Soldagem e instalação de tubos

Limpeza dos tubos Teste de estanqueidade

Isolamento das juntas

Secagem a vácuo

Observação: A limpeza da tubulação deve ser realizada após a conclusão de conexões soldadas da tubulação, exceto as conexões finais das unidades terminais. Ou seja, a limpeza deve ser realizada após a conexão das unidades centrais, mas antes que as unidades terminais sejam conectadas.

4.1.2 Três princípios para a tubulação de refrigerante

MOTIVOS

MEDIDAS

LIMPO

Partículas, como o óxido produzido durante a soldagem e/ou a poeira do prédio, podem causar o mau funcionamento do compressor.

- Vedação da tubulação durante o armazenamento¹
- Fluxo de nitrogênio durante a soldagem²
- Limpeza dos tubos³

SECO

A umidade pode provocar a formação de gelo ou à oxidação de componentes internos, levando a uma operação anormal ou a danos no compressor.

- Limpeza dos tubos³
- Secagem a vácuo⁴

VEDADO

Vedações imperfeitas podem causar vazamento de refrigerante.

- Técnicas de manipulação de tubulação⁵ e soldagem²
- Teste de estanqueidade⁶

Observações:

- 1. Consulte a Parte 3, 4.2.1 "Entrega, armazenamento e vedação de tubulações".
- 2. Consulte a Parte 3, 4.5 "Soldagem".
- 3. Consulte a Parte 3, 4.7 "Limpeza dos Tubos".
- 4. Consulte a Parte 3, 4.9 "Secagem a Vácuo".
- 5. Consulte a Parte 3, 4.3 "Manipulação de Tubulação de Cobre".
- 6. Consulte a Parte 3, 4.8 "Teste de Estanqueidade".

4.2 Armazenamento de Tubulação de Cobre

4.2.1 Entrega, armazenamento e vedação de tubulações

Observações para instaladores: 🛠

- Certifique-se de que a tubulação não seja dobrada ou deformada durante a entrega ou enquanto estiver armazenada.
- Em ambientes de construção, armazene a tubulação em um local designado.
- Para evitar a entrada de poeira ou umidade, a tubulação deve ser mantida vedada enquanto estiver armazenada e até que esteja prestes a ser conectada. Se a tubulação for usada em breve, vede as aberturas com plugues ou fita adesiva. Se a tubulação tiver que ser armazenada por um longo período, carregue-a com nitrogênio a 0.2-0.5 MPa e vede as aberturas soldando.
- Armazenar a tubulação diretamente no solo gera o risco de entrada de poeira ou água. Suportes de madeira podem ser usados para elevar a tubulação do chão.
- Durante a instalação, certifique-se de que seja vedada a tubulação a ser inserida por um orifício na parede, para garantir que não entrem poeira e/ou fragmentos da parede.

4.3 Manipulação de Tubulação de Cobre

4.3.1 Deslubrificação com solvente

OBSERVAÇÕES PARA INSTALADORES: 🛠

O óleo de lubrificação usado durante alguns processos de fabricação de tubos de cobre pode formar depósitos nos sistemas de refrigerante R-410A, causando erros no sistema. Portanto, deve ser selecionada uma tubulação de cobre sem óleo. Se for usada tubulação de cobre comum (com óleo), ela deve ser limpa com gaze embebida em solução de tetracloroetileno, antes da instalação.

Cuidado

Nunca use tetracloreto de carbono (CCI₄) para limpeza ou lavagem de tubos, pois isso danificará seriamente o sistema.

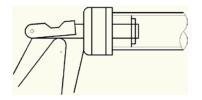
4.3.2 Corte de tubos de cobre e remoção de rebarbas

Observações para instaladores: 🛠

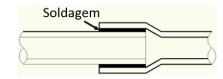
- Para cortar a tubulação, use um cortador de tubos, em vez de uma serra ou máquina de corte. Gire a tubulação lenta e uniformemente, aplicando força uniforme a fim de garantir que ela não se deforme durante o corte. O uso de uma serra ou máquina de corte para cortar a tubulação gera o risco de entrada de aparas de cobre na tubulação. As aparas de cobre são difíceis de remover e representam um sério risco para o sistema, se entrarem no compressor ou bloquearem a unidade de aceleração.
- Depois de cortar usando um cortador de tubos, use um alargador/raspador para remover quaisquer rebarbas que se formaram na abertura, mantendo a abertura da tubulação para baixo a fim de evitar que lascas de cobre entrem na tubulação.

4.3.3 Expansão das extremidades da tubulação de cobre

OBSERVAÇÕES PARA INSTALADORES: 🦠


• As extremidades da tubulação de cobre podem ser expandidas para que outro comprimento da tubulação possa ser inserido e a junta, soldada.

• Insira a cabeça expansora do expansor de tubo no tubo. Depois de completar a expansão da tubulação, gire o tubo de cobre alguns graus para retificar a marca da linha reta deixada pela cabeça de expansão.

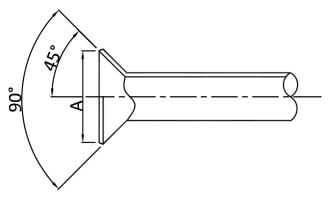

Cuidado

• Certifique-se de que a seção expandida da tubulação esteja lisa e uniforme. Remova as rebarbas que restarem após o corte.

Figura 3-4.1: Expansão das extremidades da tubulação de cobre

4.3.4 Junções alargadas

Devem ser usadas junções alargadas onde é necessária uma conexão de rosca.


Observações para instaladores: 🛠

- Antes de alargar a tubulação de 1/2H (meio duro), aplique um recozimento na extremidade do tubo a ser alargado.
- Lembre-se de colocar a porca de alargamento na tubulação antes de alargar.
- Assegure-se de que a abertura alargada não esteja rachada, deformada ou riscada, caso contrário não formará uma boa vedação e poderá ocorrer vazamento de refrigerante.
- O diâmetro da abertura alargada deve estar dentro das faixas especificadas na Tabela 3-4.1. Consulte a Figura 3-4.2.

Tabela 3-4.1: Faixas de tamanho de abertura alargada

Tubo		Diâmetro da abertura de
mm	in	alargamento (A) (mm)
Ø 6,35	1/4	8,3 - 8,7
Ø 9,53	3/8	12,0 -12,4
Ø 12,7	1/2	15,4 - 15,8
Ø 15,9	5/8	18,6 - 19,0
Ø 19,1	3/4	22,9 - 23,3

Figura 3-4.2: Abertura de alargamento

 Ao conectar uma junção alargada, aplique um pouco de óleo do compressor nas superfícies interna e externa da abertura alargada para facilitar a conexão e rotação da porca de alargamento, garantir uma conexão firme entre a superfície de vedação e a superfície do rolamento e evitar que o tubo seja deformado.

4.3.5 Curva da tubulação

A curva da tubulação de cobre reduz o número de junções soldadas necessárias, pode melhorar a qualidade e economizar material.

OBSERVAÇÕES PARA INSTALADORES:

Métodos de curva de tubulação

- Curva manual é adequada para tubulação de cobre fina (Ф 6,35 mm Ф 12,7 mm).
- Curva mecânica (usando uma mola de flexão, dobradeira manual ou elétrica) é adeguada para uma ampla variedade de diâmetros (Φ 6,35 mm - Φ54,0 mm).

Cuidado

- Ao usar um dobrador de mola, certifique-se de que ele esteja limpo antes de inseri-lo na tubulação.
- Depois de curvar um tubo de cobre, certifique-se de que não haja rugas ou deformações nos dois lados do tubo.
- Certifique-se de que os ângulos de curvatura não excedam 90°, caso contrário, podem aparecer rugas no lado interno do tubo, e o tubo poderá deformar ou rachar. Consulte a Figura 3-4.3.
- Não use um tubo que tenha se deformado durante o processo de dobragem; certifique-se de que a seção transversal na curva é maior que 2/3 da área original.

Figura 3-4.3: Curva de tubo com mais de 90°

4.4 Apoios da Tubulação de Refrigerante

Quando a unidade estiver funcionando, a tubulação de refrigerante se deformará (encolher, expandir, inclinar). Para evitar danos à tubulação, ganchos ou apoios devem ser espaçados de acordo com os critérios da Tabela 3-4.2. Em geral, os tubos de gás e líquido devem ser suspensos em paralelo e o intervalo entre os pontos de apoio deve ser selecionado de acordo com o diâmetro do tubo de gás.

Deve ser providenciado um isolamento adequado entre a tubulação e os apoios. Se forem usados cavilhas ou blocos de madeira, use madeira que tenha sido submetida a tratamento de preservação.

As mudanças na direção do fluxo e a temperatura do refrigerante provocam movimento, expansão e encolhimento da tubulação de refrigerante. Portanto, a tubulação não deve ser fixada com muita força, caso contrário, podem ocorrer concentrações de tensão na tubulação, com potencial de ruptura.

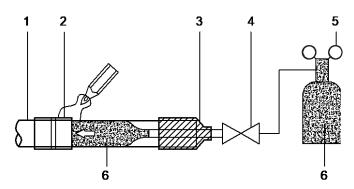
Tabela 3-4.2: Espaçamentos de apoio da tubulação de refrigerante

Tube (mm)	Intervalo entre pontos de apoio (m)			
Tubo (mm)	Tubulação horizontal	Tubulação vertical		
< Ø20	1,0	1,5		
Ø20 - Ø40	1,5	2,0		
> Ø40	2,0	2,5		

4.5 Soldagem

Devem ser tomados cuidados para evitar a formação de óxido no interior da tubulação de cobre durante a soldagem. A presença de óxido em um sistema de refrigerante afeta negativamente a operação de válvulas e compressores, levando a uma possível baixa eficiência ou até mesmo a falha do compressor. Para evitar a oxidação, durante a soldagem, o nitrogênio deve fluir pela tubulação do refrigerante.

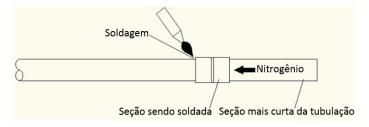
Observações para instaladores: 🛠

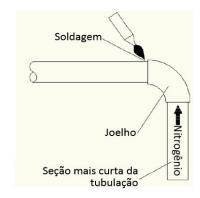

Advertência

- Nunca passe oxigênio pela tubulação, pois isso ajuda na oxidação e pode levar facilmente a explosões e, portanto, é extremamente perigoso.
- Tome as devidas precauções de segurança, como ter um extintor de incêndio à mão durante a soldagem.

Fluxo de nitrogênio durante a soldagem

- Durante a soldagem, use uma válvula redutora de pressão para fluir o nitrogênio pela tubulação de cobre a 0,02-0,03 MPa.
- Inicie o fluxo antes do início da soldagem e assegure-se de que o nitrogênio passe continuamente pela seção que está sendo soldada até que a soldagem esteja completa e o cobre tenha esfriado completamente.

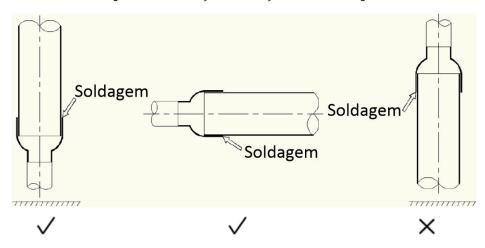

Figura 3-4.4: Fluxo de nitrogênio pela tubulação durante a soldagem



Lege	nda
1	Tubulação de cobre
2	Seção sendo soldada
3	Conexão de nitrogênio
4	Válvula manual
5	Válvula redutora de pressão
6	Nitrogênio

- Ao unir uma seção mais curta da tubulação a uma seção mais longa, escoe o nitrogênio do lado mais curto para permitir um melhor deslocamento do ar com nitrogênio.
- Se a distância do ponto onde o nitrogênio entra na tubulação até a junção a ser soldada for longa, assegurese de que o nitrogênio flua por tempo suficiente para descarregar todo o ar da seção a ser soldada, antes de iniciar a soldagem.

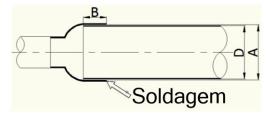
Figura 3-4.5: Fluxo de nitrogênio do lado mais curto durante a soldagem


Continua na próxima página...

Observações para instaladores: 🦠

Orientação da tubulação durante a soldagem

A soldagem deve ser conduzida para baixo ou horizontalmente para evitar vazamento de material de enchimento.


Figura 3-4.6: Orientação da tubulação durante a soldagem

Sobreposição da tubulação durante a soldagem

A Tabela 3-4.3 especifica a sobreposição mínima permitida da tubulação e a faixa de tamanhos de folga permissíveis para junções soldadas na tubulação de diferentes diâmetros. Consulte também a Figura 3-4.7.

Figura 3-4.7: Sobreposição de tubulação e folga para junções soldadas

Legenda					
Α	Diâmetro interno do tubo maior				
D	Diâmetro externo do tubo menor				
В	Profundidade incrustada (sobreposição)				

Tabela 3-4.3: Sobreposição de tubulação e folga para junções soldadas1

D (mm)	Mínimo admissível B (mm)	Admissível A - D (mm)
5 < D < 8	6	0.05 0.21
8 < D < 12	7	0,05 - 0,21
12 < D < 16	8	0.05 0.27
16 < D < 25	10	0,05 - 0,27
25 < D < 35	12	0.05, 0.35
35 < D < 45	14	0,05 - 0,35

Observações:

1. A, B, D referem-se às dimensões mostradas na Figura 3-4.7.

Enchimento

- Use enchimento de liga de soldagem de cobre/fósforo (BCuP) que não requer fluxo.
- Não use fluxo. O fluxo pode causar corrosão da tubulação e afetar o desempenho do óleo do compressor.
- Não use antioxidantes durante a soldagem. O resíduo pode obstruir a tubulação e danificar componentes.

4.6 Juntas de Derivação

OBSERVAÇÕES PARA INSTALADORES: 🛠

 Use juntas de derivação no formato de U, conforme especificado nos desenhos de construção - não substitua juntas de derivação no formato de U por juntas em T.

- As juntas de derivação internas podem ser instaladas horizontalmente ou verticalmente. As juntas de derivação horizontais devem ser instaladas com um ângulo em relação à horizontal de no máximo 10° para evitar distribuição irregular de refrigerante e possível mau funcionamento. Consulte a Figura 3-4.8.
- Para garantir uma distribuição uniforme do refrigerante, é imposta uma limitação de como podem ser instaladas juntas de derivação próximas em curvas, outras juntas de derivação e as seções retas da tubulação que levam a unidades terminais. Consulte a Parte 3, 3.6 "Juntas de derivação".

Tubo secundário em formato U

Visualização em direção A

Errado Correto

10°
10°
Superfície horizontal

4.7 Limpeza dos Tubos

4.7.1 Finalidade

Para remover poeira, outras partículas e umidade, que podem causar mau funcionamento do compressor se não forem limpas antes da operação do sistema, a tubulação de refrigerante deve ser limpa com nitrogênio. Conforme descrito na Parte 3, 4.1.1 "Procedimento de instalação", a limpeza da tubulação deve ser realizada assim que as conexões das tubulações forem concluídas, exceto as conexões finais das unidades terminais. Nesse caso, a limpeza deve ser realizada após a conexão das unidades centrais, mas antes que as unidades terminais sejam conectadas.

4.7.2 Procedimento

Observações para instaladores: 🛠

Advertência

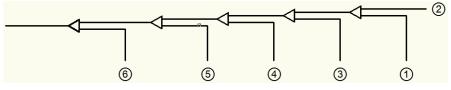
Use apenas nitrogênio para a limpeza. O uso de dióxido de carbono gera o risco de condensação na tubulação. Oxigênio, ar, refrigerante, gases inflamáveis e gases tóxicos não devem ser usados para a limpeza. A utilização de tais gases pode causar incêndio ou explosão.

Procedimento

Os lados do líquido e do gás devem ser limpos simultaneamente; alternativamente, um lado pode ser limpo primeiro e, em seguida, as etapas 1 a 8 podem ser repetidas para o outro lado. O procedimento de limpeza é apresentado a seguir.

- 1. Cubra as entradas e saídas das unidades terminais para evitar que a poeira seja soprada para dentro durante a limpeza da tubulação (A limpeza da tubulação deve ser realizada antes de conectar as unidades terminais ao sistema da tubulação).
- 2. Conecte uma válvula redutora de pressão a um cilindro de nitrogênio.
- 3. Conecte a saída da válvula redutora de pressão à entrada no lado do líquido (ou do gás) da unidade central.
- 4. Use plugues cegos para bloquear todas as aberturas do lado do líquido (ou gás), exceto a abertura da unidade terminal mais afastada da unidade central ("Unidade terminal A" na Figura 3-4.9).
- 5. Comece a abrir a válvula do cilindro de nitrogênio e aumente gradativamente a pressão para 0,5 MPa.
- 6. Aguarde até que o nitrogênio flua até a abertura na unidade terminal A.
- 7. Limpe a primeira abertura:
 - a) Usando material adequado como uma bolsa ou um pano, pressione com firmeza contra a abertura na unidade terminal A.
 - b) Quando a pressão ficar muito elevada para bloquear com as mãos, remova rapidamente sua mão e deixe que o gás escape.
 - c) Limpe repetidamente desse modo até que nenhuma sujeira ou umidade saia da tubulação. Use um pano limpo para verificar se há sujeira ou umidade saindo da tubulação. Vede a abertura após ter sido limpa.
- 8. Limpe as outras aberturas do mesmo modo, trabalhando em sequência da unidade terminal A em direção à unidade central. Consulte a Figura 3-4.10.
- 9. Após concluir a limpeza, vede todas as aberturas para evitar que poeira e umidade penetrem.

---tubo de líquido
---tubo de gás


Unidade central

Unidade terminal A

Unidade terminal B

Figura 3-4.9: Limpeza dos tubos usando nitrogênio

Figura 3-4.10: Sequência de limpeza dos tubos¹

Observações:

1. 1-2-3-4-5-6 trabalhando em direção à unidade central.

4.8 Teste de Estanqueidade

4.8.1 Finalidade

Para evitar falhas causadas por vazamento de refrigerante, deve ser realizado um teste de estanqueidade antes da preparação do sistema.

4.8.2 Procedimento

OBSERVAÇÕES PARA INSTALADORES:

Advertência

Apenas nitrogênio seco deve ser usado para teste de estanqueidade. Oxigênio, ar, gases inflamáveis e gases tóxicos não devem ser usados para o teste de estanqueidade. O uso de tais gases pode causar incêndio ou explosão.

Procedimento

O procedimento do teste de estanqueidade é apresentado a seguir.

Etapa 1

Após concluir o sistema da tubulação e conectar as unidades terminal e central, aspire a tubulação até -0,1 MPa.

Etapa 2

- Carregue a tubulação interna com nitrogênio à 0,3 MPa por meio das válvulas de agulha nas válvulas de bloqueio de líquido e gás e deixe por pelo menos 3 minutos (não abra as válvulas de bloqueio de líquido e gás). Observe o manômetro de pressão para verificar grandes vazamentos. Se houver um grande vazamento, o manômetro de pressão cairá rapidamente.
- Se não houver grandes vazamentos, carregue a tubulação com nitrogênio à 1,5 MPa e deixe por pelo menos 3 minutos. Observe o manômetro de pressão para verificar pequenos vazamentos. Se houver um pequeno vazamento, o manômetro de pressão cairá um pouco.
- Se não houver pequenos vazamentos, carregue a tubulação com nitrogênio a 4,0 MPa e deixe por pelo menos 24 horas para verificar micro vazamentos. Micro vazamentos são difíceis de detectar. Para verificar micro vazamentos, permita qualquer alteração na temperatura ambiente durante o período de teste ajustando a pressão de referência em 0,01 MPa para cada 1°C de diferença de temperatura. Pressão de referência ajustada = Pressão na pressurização + (temperatura na observação temperatura na pressurização) x 0,01 MPa. Compare a pressão observada com a pressão de referência ajustada. Se forem iguais, a tubulação passou no teste de estanqueidade. Se a pressão observada for menor que a pressão de referência ajustada, a tubulação tem um micro vazamento.
- Se o vazamento for detectado, consulte a Parte 3, 4.8.3 "Detecção de vazamento". Após encontrar e reparar o vazamento, o teste de estanqueidade deve ser repetido.

Etapa 3

Caso não haja vazamentos, continue para a secagem a vácuo (consulte a Parte 3, 4.9 "Secagem a vácuo")
após concluir o teste de estanqueidade. Reduza a pressão do sistema para 0,5-0,8 MPa e deixe o sistema
pressurizado até que esteja pronto para realizar o procedimento de secagem a vácuo.

Nitrogênio da válvula de bloqueio do lado do líquido

Unidade central

Tubo de gás

Tubo de líquido

Unidade terminal

Figura 3-4.11: Teste de estanqueidade

4.8.3 Detecção de vazamento

Observações para instaladores: 🛠

Os métodos gerais para identificação de uma fonte de vazamento são os seguintes:

- 1. Detecção por áudio: vazamentos relativamente grandes são audíveis.
- 2. Detecção por toque: coloque sua mão nas juntas para sentir o gás escapando.
- 3. Detecção com água e sabão: pequenos vazamentos podem ser detectados pela formação de bolhas ao aplicar água e sabão a uma junção.
- 4. Detecção de vazamento de refrigerante: para vazamentos difíceis de detectar, a detecção de vazamento de refrigerante pode ser usada da seguinte maneira:
 - a) Pressurize a tubulação com nitrogênio a 0,3 MPa.
 - b) Adicione refrigerante na tubulação até que a pressão atinja 0,5 MPa.
 - c) Use um detector de refrigerante de halogênio para encontrar o vazamento.
 - d) Se a origem do vazamento não puder ser encontrada, continue carregando com refrigerante a uma pressão de 4 MPa e, em seguida, procure novamente.

4.9 Secagem a Vácuo

4.9.1 Finalidade

A secagem a vácuo deve ser realizada para remover umidade e gases não condensáveis do sistema. A remoção da umidade evita a formação de gelo e a oxidação de tubulações de cobre ou de outros componentes internos. A presença de partículas de gelo no sistema pode causar operação anormal, enquanto partículas de cobre oxidado podem causar danos no compressor. A presença de gases não condensáveis no sistema pode levar a flutuações de pressão e fraco desempenho do trocador de calor.

A secagem a vácuo também oferece detecção adicional de vazamentos (além do teste de estanqueidade).

4.9.2 Procedimento

Observações para instaladores: 🛠

Durante a secagem a vácuo, uma bomba de vácuo é usada para reduzir a pressão na tubulação de modo que qualquer umidade presente evapore. A 5 mmHg (755 mmHg abaixo da pressão atmosférica típica), o ponto de ebulição da água é 0°C. Portanto, uma bomba a vácuo capaz de manter uma pressão de -756 mmHg ou menor deve ser usada. Recomenda-se usar uma bomba a vácuo com uma descarga maior do que 4 l/s e um nível de precisão de 0,02 mmHg.

Cuidado

- Antes de realizar a secagem a vácuo, certifique-se de que todas as válvulas de bloqueio da unidade central estejam firmemente fechadas.
- Após concluir a secagem a vácuo e a bomba a vácuo ser desligada, a baixa pressão da tubulação pode aspirar o lubrificante da bomba a vácuo para o sistema. O mesmo poderia ocorrer se a bomba de vácuo fosse desligada inesperadamente durante o procedimento de secagem a vácuo. A mistura do lubrificante da bomba com o óleo do compressor poderia causar mau funcionamento do compressor e, por isso, uma válvula unidirecional deve ser usada para evitar que o lubrificante da bomba de vácuo penetre no sistema da tubulação.

Procedimento

O procedimento de secagem a vácuo é apresentado a seguir.

Etapa 1

 Conecte a mangueira azul (lado de baixa pressão) do manifold à válvula de bloqueio da tubulação de gás da unidade central mestre, a mangueira vermelha (lado de alta pressão) à válvula de bloqueio da tubulação de líquido da unidade central mestre e a mangueira amarela à bomba de vácuo.

Continua na página ao lado...

Observações para instaladores: 🛠

Etapa 2

• Inicie a bomba de vácuo e então abra as válvulas do manifold para iniciar a aspiração do sistema.

- Após 30 minutos, feche as válvulas do manifold.
- Após um tempo maior que 5 a 10 minutos, verifique o manifold. Se o manifold tiver retornado a zero, verifique a existência de vazamentos na tubulação de refrigerante.

Etapa 3

 Reabra as válvulas do manifold e continue a secagem por pelo menos 2 horas e até que uma diferença de pressão de 756 mmHg ou maior seja atingida. Após atingir uma diferença de pressão de no mínimo 756 mmHg, continue a secagem a vácuo por 2 horas.

Etapa 4

- Feche as válvulas do manifold e desligue a bomba a vácuo.
- Após 1 hora, verifique manômetro de pressão. Se a pressão na tubulação não tiver aumentado, o procedimento está concluído. Se a pressão tiver aumentado, verifique para vazamentos.
- Após a secagem a vácuo, mantenha as mangueiras azul e vermelha conectadas ao manifold e às válvulas de bloqueio da unidade central, em preparo para o carregamento do refrigerante (consulte a Seção 3, item "7. Carregamento de Refrigerante").

Mangueira amarela

Unidade Central

Unidade Central

Unidade Central

Mangueira amarela

Unidade Central

Mangueira amarela

Unidade Central

Mangueira amarela

Unidade Central

Viálvula de bloqueio da tubulação de gás

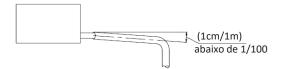
Porta de serviço da

válvula de bloqueio

Válvula de bloqueio da tubulação de líquido

Figura 3-4.12: Secagem a vácuo

5. Tubulação de Drenagem


5.1 Considerações sobre Projeto

O projeto da tubulação de drenagem deve levar em conta as seguintes considerações:

 A tubulação de drenagem de condensado da unidade terminal precisa ter diâmetro suficiente para transportar o volume de condensado produzido nas unidades terminais e instalada em uma inclinação suficiente para permitir a drenagem. Geralmente é preferível uma descarga o mais próximo possível das unidades terminais.

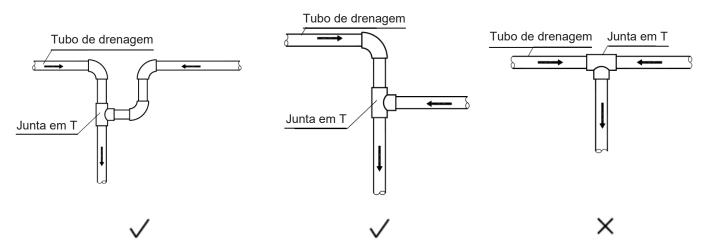

- Para evitar que a tubulação de drenagem se torne excessivamente longa, deve-se considerar a instalação de vários sistemas de tubulação de drenagem, com cada sistema tendo seu próprio ponto de drenagem e fornecendo drenagem para um subconjunto de todas as unidades terminais.
- A rota da tubulação de drenagem deve levar em consideração a necessidade de manter uma inclinação suficiente para a drenagem, evitando obstáculos como vigas e dutos. A inclinação da tubulação de drenagem deve estar pelo menos 1:100 distante das unidades terminais. Consulte a Figura 3-5.1.

Figura 3-5.1: Requisito de inclinação mínima da tubulação de drenagem

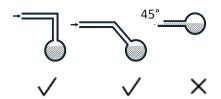

 Para evitar refluxo e outras possíveis complicações, dois tubos de drenagem horizontais não devem se encontrar no mesmo nível. Consulte a Figura 3-5.2 para obter disposições adequadas de conexão. Tais arranjos também permitem que a inclinação dos dois tubos horizontais seja selecionada independentemente.

Figura 3-5.2: Junções da tubulação de drenagem - configurações corretas e incorretas

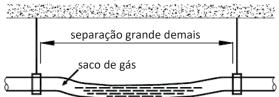

• Um ramal da tubulação de drenagem deve se conectar à tubulação principal de drenagem pelo topo, como mostrado na Figura 3-5.3.

Figura 3-5.3: Conexão do tubo de um ramal de drenagem à tubulação principal de drenagem.

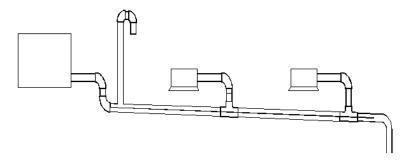
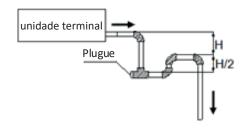

 O espaçamento recomendado do apoio/gancho é de 0,8 a 1,0 m para tubulação horizontal e 1,5 a 2,0 m para tubulação vertical. Cada seção vertical deve estar equipada com pelo menos dois apoios. Para tubulações horizontais, espaçamentos maiores que os recomendados levam à flacidez e deformação do perfil do tubo nos apoios, o que impede o fluxo de água e, portanto, devem ser evitados.

Figura 3-5.4: Efeito da sustentação insuficiente a tubulação de drenagem

 Devem ser instaladas saídas de ar no ponto mais alto de cada sistema de tubulação de drenagem para garantir que a condensação seja descarregada suavemente. Curvas em U ou cotovelos devem ser usados para garantir que a abertura da ventilação fique voltada para baixo, evitando a entrada de poeira na tubulação. Consulte a Figura 3-5.5. As aberturas de ventilação não devem ser instaladas próximas às unidades terminais que possuem bombas de dreno (de elevação).

Figura 3-5.5: Saídas de ar da tubulação de drenagem



- A tubulação de drenagem das unidades não deve ser conectada à rede de esgoto, água da chuva ou outra tubulação de drenagem e não permita que a tubulação de drenagem das unidades entre em contato direto com o solo.
- O diâmetro da tubulação de drenagem não deve ser inferior à conexão da tubulação de drenagem das unidades terminais.
- Para permitir a inspeção e a manutenção, os grampos para tubulação enviados com as unidades devem ser usados para conectar a tubulação de drenagem às unidades terminais não pode ser usado adesivo.
- Deve-se adicionar isolamento térmico à tubulação de drenagem para evitar a formação de condensação. O isolamento térmico deve se estender por todo o trajeto até a conexão com a unidade terminal.
- As unidades com bombas de drenagem devem ter sistemas de tubulação de drenagem separados dos sistemas que usam drenagem natural.

5.2 Coletores de Água

Nas unidades terminais com diferencial de pressão negativa elevado na saída da bandeja de drenagem deve ser instalado um coletor na tubulação de drenagem para evitar uma drenagem deficiente e/ou a água sendo levada de volta para a bandeja de drenagem. Os coletores devem ser organizados como na Fig. 3-5.6. A separação vertical H deve ser superior a 50 mm. Um plugue pode ser instalado para permitir limpeza ou inspeção.

Figura 3-5.6: Coletores de água da tubulação de drenagem

5.3 Seleção dos Diâmetros da Tubulação

Selecione os diâmetros da tubulação de drenagem secundária (a conexão da tubulação de drenagem para cada unidade) de acordo com o volume do fluxo da unidade terminal e selecione os diâmetros da tubulação de drenagem principal de acordo com o volume de fluxo combinado das unidades terminais a montante. Use uma suposição de projeto de 2 litros de condensado por cavalo-vapor por hora. Por exemplo, o volume de fluxo combinado de três unidades de 2 HP e duas unidades de 1,5 HP seria calculado da seguinte forma:

Volume de fluxo combinado = 3 x $2 L/HP/h \times 2 HP$ = 18 L/h + 2 x $2 L/HP/h \times 1,5 HP$

As tabelas 3-5.1 e 3-5.2 especificam os diâmetros de tubulação necessários para a tubulação secundária horizontal e vertical e para a tubulação principal. Observe que a tubulação principal deve usar PVC40 ou maior.

Tubulação de PVC	Diâmetro nominal (mm)	Capacid	Comentários	
Tubulação de PVC	Inclinação 1:50 Inclinação 1:10		Inclinação 1:100	Comentarios
PVC25	25	39	27	Somente para
PVC32	32	70	50	tubulação secundária
PVC40	40	125	88	
PVC50	50	247	175	Tubulação secundária ou principal
PVC63	63	473	334	ou principal

Tabela 3-5.1: Diâmetros do tubo de drenagem horizontal

Tubulação de PVC	Diâmetro nominal (mm)	Capacidade (L/h)	Comentários
PVC25	25	220	Comento para tubulação accundária
PVC32	32	410	Somente para tubulação secundária
PVC40	40	730	
PVC50	50	1440	
PVC63	63	2760	Tubulação secundária ou principal
PVC75	75	5710	
PVC90	90	8280	

5.4 Tubulação de Drenagem para Unidades com Bombas de Elevação

A tubulação de drenagem de unidades com bombas de elevação deve levar em conta as seguintes considerações adicionais:

- Uma seção descendente deve vir imediatamente após a seção ascendente vertical adjacente à unidade; caso contrário, ocorrerá um erro na bomba de água. Consulte a Figura 3-5.7.
- Os respiros de ar não devem ser instalados em seções ascendentes verticais da tubulação de drenagem; caso contrário, a água pode ser descarregada pelo respiro de ar ou o fluxo de água pode ser impedido.

Figura 3-5.7: Seção inclinada para baixo da tubulação de drenagem

5.5 Instalação da tubulação de drenagem

OBSERVAÇÕES PARA INSTALADORES: 🛠

A instalação da tubulação de drenagem deve ocorrer na seguinte ordem:

Instalação da unidade terminal Instalação da tubulação de drenagem Isolamento da tubulação de drenagem

Cuidado

- Certifique-se de que todas as juntas estejam firmes e, uma vez conectadas todas as tubulações de drenagem, faça um teste de estanqueidade e um teste de fluxo de água.
- Não conecte a tubulação de drenagem das unidades à rede de esgoto, água da chuva ou outra tubulação de drenagem e não permita que a tubulação de drenagem das unidades entre em contato direto com o solo.
- Para unidades com bombas de drenagem, teste se a bomba funciona corretamente, adicionando água à bandeja de drenagem da unidade e fazendo a unidade funcionar. Para permitir a inspeção e a manutenção, os grampos dos tubos enviados com as unidades devem ser usados para conectar a tubulação de drenagem às unidades terminais - não deve ser usado adesivo.

5.6 Teste de estanqueidade e teste de fluxo de água

Uma vez concluída a instalação de um sistema de tubulação de drenagem, devem ser realizados testes de estanqueidade e de fluxo de água.

Observações para instaladores: 🛠

Teste de estanqueidade de água

• Encha a tubulação com água e teste vazamentos por um período de 24 horas.

Teste de fluxo de água (teste de drenagem natural)

• Encha lentamente a bandeja de drenagem de cada unidade terminal com pelo menos 600 ml de água pela porta de inspeção e verifique se a água é descarregada pela saída da tubulação de drenagem.

Cuidado

• O bujão de drenagem na bandeja de drenagem é para remover a água acumulada antes de fazer manutenção da unidade terminal. Durante a operação normal, o dreno deve ser conectado para evitar vazamentos.

6. Isolamento

6.1 Isolamento da Tubulação dE Refrigerante

6.1.1 Finalidade

Durante a operação, a temperatura da tubulação de refrigerante varia. O isolamento é necessário para garantir o desempenho da unidade e a vida útil do compressor. Durante o resfriamento, a temperatura do tubo de gás pode ser muito baixa. O isolamento impede a formação de condensação na tubulação. Durante o aquecimento, a temperatura do tubo de gás pode subir até 100 °C. O isolamento serve como proteção necessária contra queimaduras.

6.1.2 Seleção de materiais de isolamento

O isolamento da tubulação de refrigerante deve ser espuma de células fechadas com classificação de resistência ao fogo B1, que possa suportar uma temperatura constante de mais de 120 °C e que esteja em conformidade com toda a legislação aplicável.

6.1.3 Espessura do isolamento

Realize o tratamento de isolamento térmico para a tubulação nos lados gás e líquido respectivamente. As tubulações nos lados líquido e ar tem uma temperatura baixa durante o modo resfriamento. Realize medidas de isolamento suficiente para evitar a condensação. As espessuras mínimas para o isolamento da tubulação de refrigerante estão especificadas na Tabela 3-6.1.

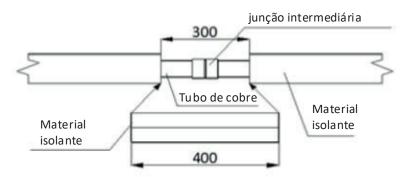
Tabela 3-6.1: Espessura do isolamento da tubulação do refrigerante

Diâmetro externo da tubulação (mm)	Espessura mínima do isolamento (mm)
Ø6,35 (1/4in)	
Ø9,53 (3/8in)	15
Ø12,7 (1/2in)	
Ø15,9 (5/8in)	
Ø19,1 (3/4in)	
Ø22,2 (7/8in)	20
Ø25,4 (1in)	
Ø28,6 (1-1/8in)	

6.1.4 Instalação do isolamento da tubulação

Com exceção do isolamento de junção, o isolamento deve ser aplicado à tubulação antes de fixá-la no lugar. O isolamento nas junções da tubulação de refrigerante deve ser aplicado após o teste de estanqueidade ter sido concluído.

Observações para instaladores: 🛠


- A instalação do isolamento deve ser feita de maneira adequada ao tipo de material isolante utilizado.
- Certifique-se de que não haja folgas nas junções entre as seções de isolamento.
- Não aplique fita com muita força, pois isso pode reduzir o isolamento, reduzindo suas propriedades isolantes, levando à condensação e perda de eficiência.
- Isole os tubos de líquido e de gás e líquido separadamente; caso contrário, a troca de calor entre os dois lados afetará muito a eficiência.
- Não encoste os tubos de gás e líquido isolados separadamente, pois isso pode danificar as junções entre as seções de isolamento.

6.1.5 Instalação do isolamento de junção

O isolamento nas junções da tubulação de refrigerante deve ser instalado após o teste de estanqueidade ter sido concluído com êxito. O procedimento em cada junção é o seguinte:

- 1. Corte uma seção de isolamento de 50 a 100 mm maior que a folga a ser preenchida. Certifique-se de que as aberturas transversais e longitudinais sejam todas cortadas uniformemente.
- 2. Engaste a seção na abertura, garantindo que as extremidades encostem firmemente nas seções de isolamento em ambos os lados da folga.
- 3. Cole o corte longitudinal e as junções com as seções de isolamento de cada lado da abertura.
- 4. Vede as emendas com fita adesiva.

Figura 3-6.1: Instalação do isolamento de junção (unidade: mm)

6.2 Isolamento da Tubulação de Drenagem

- Use tubo isolante de borracha/plástico com classificação de resistência ao fogo B1.
- Normalmente, o isolamento deve ter mais de 10 mm de espessura.
- Para a tubulação de drenagem instalada dentro de uma parede, não é necessário isolamento.
- Use cola adequada para vedar emendas e junções no isolamento e, em seguida, una com fita reforçada com pano, de largura não inferior a 50 mm. Certifique-se de que a fita esteja firmemente fixada para evitar a condensação.
- Certifique-se de que o isolamento da tubulação de drenagem adjacente à saída de água de drenagem da unidade terminal esteja fixado na própria unidade usando cola para evitar condensação e gotejamento.

6.3 Isolamento de Dutos

O isolamento adequado deve ser adicionado aos dutos, de acordo com toda a legislação aplicável.

7. Carregamento de Refrigerante

7.1 Cálculo de Carga Adicional de Refrigerante

A carga adicional necessária de refrigerante depende do comprimento e do diâmetro da tubulação interna e externa de líquido. A Tabela 3-7.1 exibe a carga adicional de refrigerante necessária por metro de tubulação equivalente para diâmetros diferentes de tubulação. A carga adicional total de refrigerante é obtida somando-se os requisitos de carga adicional para cada uma das tubulações de líquido internas e externas, como indicado na fórmula a seguir, onde L, a L, representam os comprimentos de tubos equivalentes de diâmetros diferentes. Assuma 0,5 m como o comprimento de tubulação equivalente de cada junta de derivação.

Carga adicional de refrigerante R (kg) = $L_1(\emptyset6,35) \times 0,022$ + $L_2(\emptyset9,53) \times 0.054$ + L_3 (Ø12,7) × 0,110 + L_4 (Ø15,9) × 0,170

Carga adicional de Tubulação do

Tabela 3-7.1: Carga adicional de refrigerante

lado líquido (mm)	refrigerante por metro de tubulação equivalente (kg)
Ø6,35 (1/4in)	0,022
Ø9,53 (3/8in)	0,054
Ø12,7 (1/2in)	0,110
Ø15.9 (5/8in)	0.170

7.2 Adição de Refrigerante

OBSERVAÇÕES PARA INSTALADORES:

Cuidado

- Carregue o refrigerante apenas depois de fazer o teste de estanqueidade e a secagem a vácuo.
- Nunca carregue mais refrigerante do que o necessário já que isso pode causar golpe de aríete.
- Utilize apenas refrigerante R-410A carregar com uma substância inadequada pode causar explosões ou
- Use ferramentas e equipamentos destinados para uso com R-410A para garantir resistência à pressão exigida e evitar que materiais estranhos penetrem no sistema.
- O refrigerante deve ser tratado de acordo com toda a legislação aplicável.
- Use sempre luvas protetoras e proteja seus olhos ao carregar o refrigerante.
- Abra o contêiner de refrigerante devagar.

Procedimento

O procedimento de adição de refrigerante é o seguinte:

Etapa 1

Calcule a carga adicional de refrigerante R (kg) (consulte a Seção 3, subitem "7.1 Cálculo de Carga Adicional de Refrigerante").

Etapa 2

- Coloque um tanque de refrigerante R-410A em uma balança. Vire o tanque de cabeça para baixo para garantir que o refrigerante seja carregado em estado líquido. (O R-410A é uma mistura de dois compostos químicos diferentes. O carregamento de R-410A gasoso no sistema poderia significar que o refrigerante carregado não tem a composição correta).
- Após a secagem a vácuo (consulte a Parte 3, 4.9 "Secagem a vácuo"), as mangueiras azul e vermelha do manifold ainda devem estar conectadas ao manômetro de pressão e às válvulas de bloqueio da unidade central mestre.
- Conecte a mangueira amarela do manifold ao tanque de refrigerante R-410A.

Continua na página ao lado...

OBSERVAÇÕES PARA INSTALADORES: 🛠

Etapa 3

 Abra a válvula onde a mangueira amarela se encontra com o manômetro de pressão e abra o tanque de refrigerante ligeiramente para deixar que o refrigerante elimine o ar. Cuidado: abra o tanque devagar para evitar congelar sua mão.

Coloque a escala da balança em zero.

Etapa 4

- Abra as três válvulas no manifold para começar a carregar o refrigerante.
- Quando a quantidade carregada atingir R (kg), feche as três válvulas. Se a quantidade carregada não atingir R (kg), mas não for possível carregar mais refrigerante, feche as três válvulas no manifold, opere a unidade central no modo resfriamento e, em seguida, abra as válvulas amarela e azul. Continue carregando até que a quantidade R (kg) total de refrigerante seja carregada e, em seguida, feche as válvulas amarela e azul.

Observação: Antes de colocar o sistema em funcionamento, certifique-se de concluir as verificações prépreparação, conforme relacionado na Seção 3, subitem "10.2 Verificações Pré-preparação" e abrir todas as válvulas de bloqueio já que a operação do sistema com as válvulas fechadas danificará o compressor.

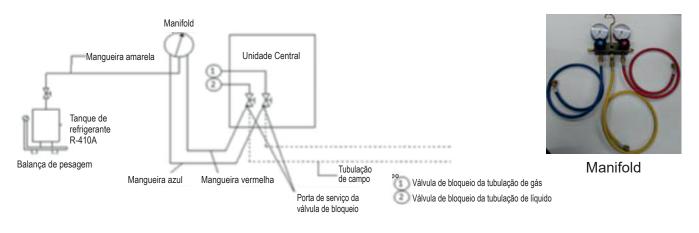


Figura 3-7.1: Carregamento do refrigerante

8. Instalação Elétrica

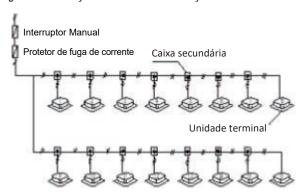
8.1 Geral

Observações para instaladores: 🛠

Cuidado

- Toda a instalação, bem como a fiação, deve ser executada por profissionais competentes e devidamente qualificados, certificados e credenciados e de acordo com a legislação em vigor.
- Os sistemas elétricos devem ser aterrados de acordo com toda a legislação em vigor.
- Os disjuntores de sobrecorrente e de corrente residual (interruptores de circuito de falha de aterramento) devem ser usados de acordo com as normas e legislações aplicáveis.
- Os padrões de fiação exibidos neste manual de dados são apenas orientações genéricas de conexão e não são direcionados ou incluem detalhes para qualquer tipo de instalação específica.
- As fiações da tubulação do refrigerante, de alimentação e de comunicação geralmente correm em paralelo. Todavia, a fiação de comunicação não deve ser unida à fiação da tubulação do refrigerante ou à fiação elétrica. Para evitar interferências de sinal, as fiações de alimentação e de comunicação não devem correr no mesmo conduíte. Se a alimentação for inferior a 10 A, uma separação de pelo menos 300 mm deve ser mantida entre os conduítes da fiação de alimentação e de comunicação; se a alimentação estiver na faixa de 10 A a 50 A, deve-se manter uma separação de no mínimo 500 mm.

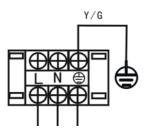
8.2 Fiação da Fonte de Alimentação


O projeto e a instalação da fiação da fonte de alimentação devem atender aos seguintes requisitos:

- Fontes de alimentação separadas devem ser fornecidas para as unidades terminais e a unidade central.
- Onde forem instaladas cinco ou mais unidades centrais, deve ser instalada uma proteção adicional contra corrente residual (proteção contra vazamento).
- Todas as unidades terminais de um sistema (ou seja, todas as unidades terminais conectadas à mesma unidade central) devem ser conectadas ao mesmo circuito de alimentação com a mesma fonte de alimentação, proteção de sobrecorrente e de corrente residual (proteção de fuga) e interruptor manual, como exibido na Figura 3-8.1. Não instale protetores separados nem interruptores manuais para cada unidade terminal. Ligar e desligar todas as unidades terminais de um sistema deve ser feito simultaneamente. O motivo disso é que, se uma unidade terminal fosse desligada repentinamente enquanto as outras unidades terminais continuam funcionando, o evaporador da unidade desligada congelaria, pois o refrigerante continuaria fluindo para essa unidade (a válvula de expansão ainda continuaria aberta), mas seu ventilador estaria desligado. As unidades terminais que permanecem em funcionamento não receberiam refrigerante suficiente, de modo que seu desempenho seria prejudicado. Além disso, o refrigerante líquido retornaria diretamente ao compressor a partir da unidade desligada e isso causaria golpe de aríete e possível dano ao compressor.
- Para o dimensionamento do cabo de alimentação da unidade central e do disjuntor do circuito, consulte a Tabela 2-6.1 na Parte 2, 6 "Características elétricas".

Tabela 3-8.1: Especificação externa da alimentação

Capacidade		Modelo 8	Modelo 10	Modelo 12	Modelo 14~16	Modelo 18	
Haddada	Fase	Monofásico	Monofásico	Monofásico	Monofásico	Monofásico	
Unidade central para alimentação	Tensão e frequência	220-240 V - 50/60 Hz					
	Fiação elétrica (mm²)	3 núcleos X2.5	3 núcleos X4,0	3 núcleos X6,0	3 núcleos X6,0	3 núcleos X6,0	
Disjuntor/fusível do circuito (A)		25	32	32	40	40	
Cabo de sinal da unidade terminal/unidade central (Sinal elétrico fraco) (mm²)		Cabo tripolar encapado					


Figura 3-8.1: Fiação da fonte de alimentação da unidade terminal

Observações para instaladores: 🛠

A fonte de alimentação deve ser conectada aos terminais da fonte de alimentação da unidade central, conforme mostrado na Figura 3-8.2

Figura 3-8.2: Terminais da fonte de alimentação monofásica da unidade central

8.3 Fiação de Comunicação

O projeto e a instalação da fiação de comunicação devem atender aos seguintes requisitos:

Deve ser usado um cabo blindado de três núcleos de 0,75 mm² para a fiação de comunicação. O uso de outros tipos de cabo pode causar interferência e mau funcionamento.

Fiação de comunicação interna:

- Os fios de comunicação P Q E devem ser conectados uma unidade após a outra, em série, a partir da unidade central até a unidade terminal final. Na unidade terminal final deve-se conectar um resistor de 120 Ω entre os terminais P e Q. Após a unidade terminal final, a fiação de comunicação NÃO deve continuar retornando para a unidade central, ou seja, não tente criar um circuito fechado.
- Os fios de comunicação P e Q NÃO devem ser aterrados.
- As redes de proteção dos fios de comunicação devem ser conectadas juntas e aterradas. O aterramento pode ser feito conectando-se ao invólucro metálico adjacente aos terminais P Q E da caixa de controle elétrico da unidade central.

Observações para instaladores: 🛠

Os fios de comunicação devem ser conectados aos terminais da unidade central, indicados na Figura 3-8.3 e na Tabela 3-8.2.

Cuidado

- A fiação de comunicação tem polaridade. Deve-se tomar cuidado para conectar os polos corretamente.
- Somente o amperímetro dedicado da Midea pode ser usado nesta unidade.
- Para o método de fiação do amperímetro, consulte o serviço de atendimento profissional da Midea.

Figura 3-8.3: Terminais de comunicação da unidade central

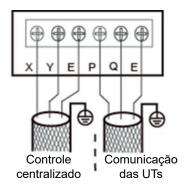
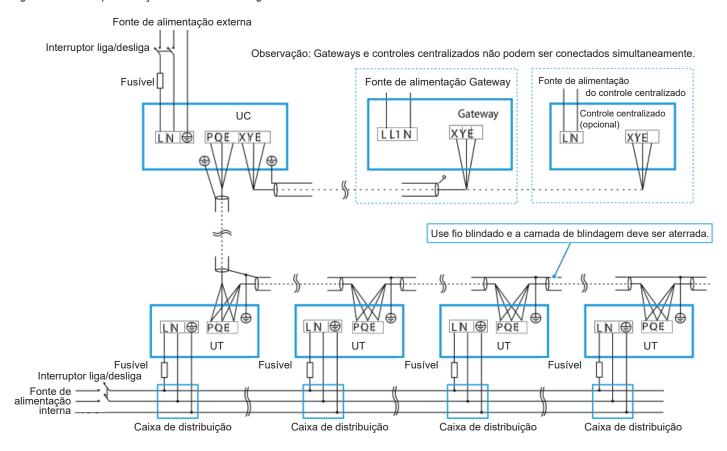



Tabela 3-8.2: Conexões de comunicação

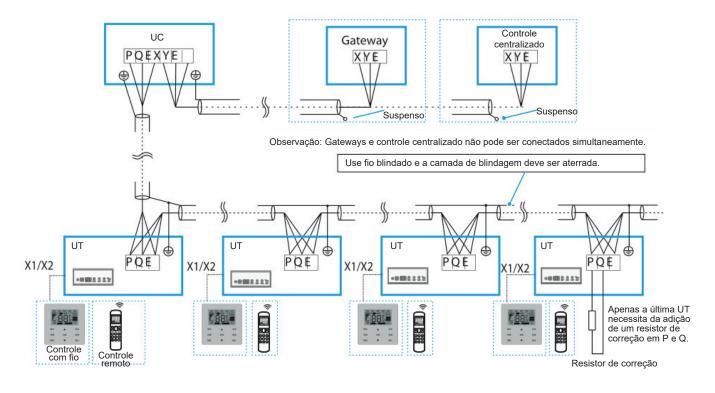

Terminais	Conexão					
XYE	Conecte ao controle remoto centralizado ou gateway					
PQE	Conecte entre as unidades terminais e a unidade central					

Figura 3-8.4: Exemplo de fiação do sistema de energia

8.4 Exemplo de Fiação

Figura 3-8.5: Exemplo de fiação de comunicação do sistema

Observação: O controle com fio e controle centralizado na caixa tracejada são acessórios opcionais. Se necessário, entre em contato com o distribuidor local para adquirir.

9. Instalação em Áreas de Alta Salinidade

9.1 Cuidado

Não instale unidades centrais onde possam ficar diretamente expostas ao ar marinho. A corrosão, particularmente nas aletas do condensador e do evaporador, pode causar mau funcionamento ou desempenho ineficiente do produto.

As unidades centrais instaladas em locais à beira-mar devem ser colocadas de modo a evitar a exposição direta ao ar marítimo e devem ser selecionadas outras opções de tratamento anticorrosão; caso contrário, a vida útil das unidades centrais será seriamente afetada.

As unidades instaladas em locais à beira-mar devem ser colocadas em operação regularmente, pois o funcionamento dos ventiladores da unidade central ajuda a evitar o acúmulo de sal nos trocadores de calor destas.

9.2 Posicionamento e Instalação

As unidades centrais devem ser instaladas a 300 m ou mais do mar. Se possível, devem ser escolhidos locais fechados bem ventilados. Se for necessário instalar unidades centrais do lado de fora, deve ser evitada exposição direta ao ar marinho. Um toldo deve ser adicionado para proteger as unidades do ar marinho e da chuva.

Garanta que as estruturas da base drenem bem, para que as bases da unidade central não fiquem encharcadas. Verifique se os furos de drenagem da carcaça da unidade central não estão bloqueados.

9.3 Inspeção e Manutenção

Além dos serviços e da manutenção padrão da unidade central, as seguintes inspeções e manutenção adicionais devem ser realizadas para unidades centrais instaladas em locais à beira-mar:

- Uma inspeção pós-instalação abrangente deve verificar se há arranhões ou outros danos nas superfícies pintadas e qualquer área danificada deve ser repintada/consertada imediatamente.
- As unidades devem ser limpas regularmente com água (não salgada) para remover qualquer sal que tenha acumulado. As áreas limpas devem abranger o condensador, o sistema de tubulação de refrigerante, a superfície externa da carcaça da unidade e a superfície externa da caixa de controle elétrico.
- As inspeções regulares devem verificar a corrosão e, se necessário, os componentes corroídos devem ser substituídos e/ou devem ser feitos tratamentos anti-corrosão.

10. Preparação

10.1 Projetos com Vários Sistemas

Para projetos com vários sistemas de refrigerante, cada sistema de resfriamento independente (ou seja, cada sistema de uma unidade central e suas unidades terminais conectadas) deve passar por uma operação de teste independente antes que os vários sistemas que compõem o projeto sejam ligados simultaneamente.

10.2 Verificações Pré-comissionamento

Antes de ligar a alimentação das unidades terminal e central, certifique-se do seguinte:

- Toda a tubulação de resfriamento interna e externa e a fiação de comunicação foi conectada ao sistema de resfriamento correto, e o sistema ao qual cada unidade terminal e central pertence está claramente indicado em cada unidade ou gravado em algum outro local adequado.
- 2. A limpeza da tubulação, o teste de estanqueidade e a secagem a vácuo foram concluídas satisfatoriamente, de acordo com as instruções.
- 3. Toda a tubulação de drenagem de condensação foi concluída e um teste de estanqueidade de água foi satisfatoriamente concluído.
- 4. Toda a fiação de alimentação e comunicação foi conectada aos terminais corretos nas unidades e controles.
- 5. Nenhuma fiação foi conectada em curto-circuito.
- 6. As fontes de alimentação das unidades terminais e centrais foram verificadas e as tensões da fonte de alimentação estão dentro de ±10% das tensões nominais de cada produto.
- 7. Toda a fiação de controle tem cabo blindado de três núcleos de 0,75 mm² e a blindagem foi aterrada.
- 8. Os ajustes de campo das unidades terminais e centrais foram definidas conforme exigido.
- 9. A carga adicional de refrigerante foi adicionada, conforme a Parte 3, "7. Carregamento de Refrigerante". Observação: Em algumas circunstâncias, pode ser necessário operar o sistema no modo resfriamento durante o procedimento de carga do refrigerante. Em tais circunstâncias, os pontos 1 a 8 acima devem ser verificados antes de operar o sistema para o fim de carregar o refrigerante e as válvulas reguladoras de gás e líquido da unidade central devem ser abertas.

Durante o comissionamento, é importante:

- Manter disponível um tanque para abastecimento de refrigerante R-410A.
- Ter em mãos um diagrama do sistema, da tubulação do sistema e da fiação de controle.

10.3 Testes de Comissionamento


10.3.1 Teste de comissionamento para funcionamento de módulo único

Após concluir todas as verificações pré-comissionamento do subitem, "10.2 Verificações Pré-comissionamento", deve ser realizado um teste de funcionamento, conforme descrito abaixo, e um Relatório de comissionamento do sistema das unidades Mini V6 Dura (consulte a Seção 3, 11 "Apêndice da Seção 3 – Relatório de Comissionamento do Sistema") deve ser preenchido como um registro do estado operacional do sistema durante a preparação.

Observação: Ao operar o sistema durante o teste de preparação, se a taxa de combinação for de 100% ou menor, opere todas as unidades terminais, e se a taxa de combinação for superior a 100%, opere apenas as unidades terminais com capacidade total igual à capacidade da unidade central.

O procedimento de teste é o seguinte:

- 1. Abra as válvulas de bloqueio de líquido e gás da unidade central.
- 2. Ligue a alimentação da unidade central.
- 3. Se estiver sendo usado um endereçamento manual, defina os endereços de cada unidade terminal.
- 4. Deixe a alimentação ligada durante no mínimo 12 horas antes de operar o sistema para garantir que os aquecedores do cárter aqueceram suficientemente o óleo do compressor.
- 5. Opere o sistema:
 - a. Opere o sistema no modo resfriamento com as seguintes configurações: temperatura de 17°C; ventilador em velocidade alta.
 - b. Após uma hora, preencha a Folha A do relatório de comissionamento do sistema e verifique os parâmetros do sistema usando o botão CHECK na PCB principal da unidade central e complete as colunas do modo resfriamento da Folha D do relatório de comissionamento do sistema da unidade central.

- c. Opere o sistema no modo aquecimento com as seguintes configurações: temperatura de 30°C; ventilador em velocidade alta.
- d. Após uma hora, preencha a Folha B do relatório de comissionamento do sistema e verifique os parâmetros do sistema usando novamente o botão CHECK na PCB principal da unidade central e complete as colunas do modo aquecimento da Folha D do relatório de comissionamento do sistema da unidade central.
- 6. Por fim, preencha a Folha C do relatório de comissionamento do sistema

11. Apêndice da Seção 3 – Relatório de Comissionamento do Sistema

Para cada sistema, deve ser preenchido um total de até 4 folhas de relatório:

- Uma folha A, uma folha B e uma folha C por sistema.
- Uma folha D por unidade central.

Relatório de Comissionamento do Sistema - Folha A

				INFO	ORMAÇÕES DO	SISTEMA			
Nome e local do projeto						Empresa cliente			
Nome do sistema			Empresa de ir		Empresa de insta	ılação			
Data	de comissio	namento				Empresa a	gente		
Tem	np. ambiente	externa				Engenheiro de comissionamento			
				Modelo		Nº de série		Fonte de a	limentação (V)
		ações da e central		ividuelo ivide serie			Tonte de dimentação (V)		
					UNIDAD	E CENTRAL			
		atura do to do compi			31112112		nte (A)		
		o sistema verificaçã				Dentro da f	aixa normal?		
ENTO ira)	UNIDADES TERMINAIS (Amostra de mais de 20% das unidades terminais, inclusive a unidade mais distante da unidade central)								
	Ambiente n°.	Modelo		Endereço	Temperatura ajustada (°C)		Temp. de saída (°C)	Drenagem OK?	Ruído/vibração anormal?
FRIAN uma h									
O RES									
) MOD Sfriame									
t OS DC									
AMETR ar no m									
E PAR									
GISTRO DE PARÂMETROS DO MODO RESFRIAMENTO (Depois de funcionar no modo resfriamentopor uma hora)									
REGIS (Dep									

Relatório de Comissionamento do Sistema - Folha B

				INF	ORMAÇÕ	ES DO S	SISTEMA					
Non	ne e local do	projeto					Empresa c	liente				
Nome do sistema						Empresa de instalação						
Data o	de comissio	namento					Empresa agente					
Tem	p. ambiente	e externa					Engenhei comissionan	iro de nento				
		~ .		Modelo			Nº de série	:	Fonte de a	limentação (V)		
		ações da e central										
					UN	IDADE	CENTRAL					
		atura do tub do compres					Corre	nte (A)				
		o sistema na verificação	porta				Dentro da f	aixa normal?				
	UNIDADES TERMINAIS (Amostra de mais de 20% das unidades terminais, inclusive a unidade mais distante da unidade central)											
ENTO ora)	Ambiente n°.	Mod	delo	Endereço	Temper ajustada		Temp. de entrada (°C)	Temp. de saída (°C)		Ruído/vibração anormal?		
REGISTRO DE PARÂMETROS DO MODO AQUECIMENTO (Depois de funcionar no modo aquecimento por uma hora)												
>0 AQ ento po												
O MOI quecime												
ROS D												
RÂMET nar no r												
DE PAF funcio												
STRO I pois de												
REGIS (De												

Relatório de Comissionamento do Sistema - Folha C

Nome e local do projeto	Nome do sistema	

REGISTRO DOS PROBLEMAS DETECTADOS DURANTE O COMISSIONAMENTO						
Nº	Descrição do problema observado	Causa suspeita	Solução realizada	Nº de série da unidade relevante		
1						
2						
3						

	LISTA DE VERIFICAÇÃO FINAL DA UNIDADE CENTRAL			
Verificação do sistema SW2 realizada?				
Algum barulho anormal?				
Alguma vibração anormal?				
Rotação do ventilador normal?				

	Engenheiro de comissionamento	Revendedor	Representante Midea
Nome:			
Assinatura:			
Data:			

Relatório de Comissionamento do Sistema - Folha D

Nome e local do projeto

Nome do sistema

			Valores observados	
Conteúdo DSP1	Parâmetros exibidos no DSP2	Comentários	Modo de resfriamento	Modo de aquecimento
0	Frequência de operação	Valor real = valor exibido		
1	Modo de operação	Consulte observação 1		
2	Nível de velocidade do ventilador operacional	Consulte observação 2		
3	Requisitos de capacidade total das unidades terminais			
4	Requisito da capacidade total da UC modificada			
5	Temperatura do condensador T3 (°C)	Valor real = valor exibido		
6	Temperatura ambiente externa T4 (°C)	Valor real = valor exibido		
7	Temperatura de descarga TP (°C)	Valor real = valor exibido		
8	Temperatura do módulo principal do Inverter TF (°C)	Valor real = valor exibido		
9	Temperatura do tubo de resfriamento do refrigerante TL (°C)	Valor real = valor exibido		
10	Posição da EXVA	Valor real = valor exibido x 8		
11	Corrente real (A)	Valor real = valor exibido		
12	Corrente do compressor do Inverter (A)	Valor real = valor exibido		
13	Tensão real (V)	Valor real = valor exibido		
14	Tensão do barramento DC (V)	Valor real = valor exibido		
15	Temperatura média do tubo do trocador de calor interno (T2/T2B)(°C)	Valor real = valor exibido		
16	T2A temperatura do condensador	Valor real = valor exibido		
17	Número total de UTs	Valor real = valor exibido		
18	Número de UTs Operacionais			
19	Nome do modelo			
20	Endereço do sistema	Endereço UC no sistema de controle centralizado		
21	Código de erro do compressor			
22	Modo prioritário	Consulte observação 3		
23	Número da versão do programa			
24-33	Código de proteção contra erros das últimas 10 vezes ⁴	Consulte observação 4		
34	Display ""			

Observações:

- 1. Modo de operação:
 - 0: Em espera; 2: resfriamento; 3: aquecimento; 4: resfriamento forçado.
- 2. O índice de velocidades do ventilador está relacionado à velocidade do ventilador em rpm e pode assumir qualquer valor inteiro no intervalo de 0 (0-desligado) até 15 (a mais rápida).
- 3. Modo de prioridade:
 - 0: Modo de prioridade de seleção automática; 1: prioridade de resfriamento; 2: prioridade de ON primeiro; 3: somente aquecimento; 4: somente resfriamento; 5: prioridade de aquecimento.
- 4. "nn" será exibido se nenhum erro ou eventos de proteção tiver ocorrido desde a ativação. Exibe todos os códigos de proteção contra erros se o número de códigos de proteção forem menores que 10 desde a inicialização.

SAC - Serviço de Atendimento ao Consumidor 3003 1005 (capitais e regiões metropolitanas) 0800 648 1005 (demais localidades)

www.carrierdobrasil.com.br

A critério da fábrica, e tendo em vista o aperfeiçoamento do produto, as características daqui constantes poderão ser alteradas a qualquer momento sem aviso prévio.

Fabricado na China e comercializado por Springer Carrier Ltda.

